Большая Советская Энциклопедия (МЕ) - Большая Советская Энциклопедия "БСЭ" (бесплатные онлайн книги читаем полные txt) 📗
Лит.: Исаков Л. Д., На все времена, для всех народов, П., 1923; Баринов В. А., Современное состояние эталонов длины и методы точного измерения длины, Л., 1941; Батарчукова Н. Р., Новое определение метра, М., 1964; Исследования в области линейных измерений, М. — Л., 1965—68 [Тр. Метрологических институтов СССР, в. 78(138), в. 101(151)]; Бржезинский М. Л., Ефремов Ю. П., Каяк Л. К., Внедрение нового определения метра в практику линейных измерений, «Измерительная техника», 1970, № 9.
Л. К. Каяк.
Рис. 1. a — поперечное сечение эталона метра, б — штрихи на нейтральной плоскости ab эталона метра; расстояние между осями средних штрихов принимается за 1 м .
Рис. 2. Схема изотопной лампы с 86 Kr и сосуда для охлаждения её стенок до 63К: 1 — баллон лампы; 2 — катод лампы; 3 — капилляр, в котором происходит свечение; 4 — сосуд Дьюара; 5 — герметически закрывающаяся металлическая камера; 6 — термопара для контроля температуры; 7 — манометр.
Метр избирательный
Метр избира'тельный, квота избирательная, в избирательном праве количество голосов, необходимое для избрания одного депутата в данном избирательном округе . Применяется обычно при пропорциональной системе представительства и при наличии крупных избирательных округов, от которых избирается несколько депутатов. Рассчитывается путём деления общего числа поданных и признанных действительными голосов на число мест, подлежащих замещению в данном округе. После распределения мандатов согласно М. и. оставшиеся голоса распределяются различными способами: по системе наибольшего остатка, по системе наибольшего среднего (система Хондта), по системе «единственного передаваемого голоса» (система Хэра) и т.п.
...метр
...метр (от греч. métron — мера, metréo — измеряю), часть сложных слов, означающих: 1) измерительный прибор (например, барометр, термометр); 2) меру длины в метрической системе (например, километр, сантиметр).
Метревели Александр Ираклиевич
Метреве'ли Александр Ираклиевич (р. 2.11.1944, Тбилиси), советский спортсмен-теннисист, заслуженный мастер спорта (1966), журналист. Чемпион СССР (17 раз в 1966—73), Европы (9 раз в 1967—73) в разных разрядах, в 1967—72 неоднократный победитель открытых первенств Азии, АРЕ, Индии, ряда штатов Австралийского Союза.
Метрика (в музыке)
Ме'трика в музыке, с середины 19 в. учение о метре .
Метрика (матем. термин)
Ме'трика, математический термин, обозначающий правило определения того или иного расстояния между любыми двумя точками (элементами) данного множества А . При этом расстоянием r(а, b ) между точками а и b множества А называется вещественная числовая функция, удовлетворяющая следующим условиям:
1) r(а, b ) ³ 0, причём r(а, b ) = 0 тогда и только тогда, когда а = b ,
2) r(а, b ) = r(b, а ); 3) r(а, b ) + r(b, с ) ³ r(а, с ). На одном и том же множестве М. может вводиться различным образом. Например, на плоскости за расстояние между точками а и b , имеющими координаты (x1 , y1 ) и (х2 , y2 ) соответственно, можно принять не только обычное евклидово расстояние
но и различные другие расстояния, например
В векторных пространствах (функциональных и координатных) М. часто задаются нормы, иногда — с помощью скалярного произведения. В дифференциальной геометрии М. вводится путём задания элемента длины дуги при помощи дифференциальной квадратичной формы (см. Римановы геометрии ). Множество с введённой на нём М. называется метрическим пространством .
Иногда под М. понимают правило определения не только расстояний, но и углов; например, проективная метрика .
В. И. Соболев.
Метрика пространства-времени
Ме'трика простра'нства-вре'мени, определяет геометрические свойства четырёхмерного пространства-времени (объединяющего физическое трёхмерное пространство и время) в относительности теории . М. п.-в. характеризуется инвариантной (не зависящей от системы отсчёта) величиной — квадратом четырёхмерного интервала , определяющим пространственно-временную связь (квадрат «расстояния») между двумя бесконечно близкими событиями,
Здесь dx1 , dx2 , dx3 — разности пространственных координат событий, dx = cdt , где dt — разность времён этих событий, с — скорость света, а gik — компоненты т. н. метрического тензора . В общем случае метрический тензор удовлетворяет уравнениям Эйнштейна общей теории относительности (см. Тяготение ) и компоненты gik являются функциями координат x1 , x2 , x3 , x , причём вид этих функций в выбранной системе отсчёта зависит от содержащихся в пространстве-времени масс. В отсутствие больших масс метрический тензор может быть приведён к виду
g11 = g22 = g33 = — 1, g00 = +1,
gik , = 0 при i ¹ k ; (2)
тогда (в прямоугольных декартовых координатах x1 = x, x2 = у, x3 = z )
ds2 =c2 dt2 — dx2 — dy2 — dz2 . (3)
Пространство-время с такой метрикой является евклидовым пространством (точнее, псевдоевклидовым из-за знака «минус» перед dx2 , dy2 , dz2 ); его называют «плоским пространством». Такова М. п.-в. в специальной теории относительности (или эквивалентная метрика Минковского пространства ).
При наличии больших масс никаким преобразованием координат нельзя привести метрический тензор к виду (2) во всём пространстве-времени. Это означает, что пространство-время обладает кривизной, которая определяется компонентами gik , (и их производными по координатам). Т. о., геометрические свойства пространства-времени (его метрика) зависят от находящейся в нём материи. Степень отклонения М. п.-в. от евклидовой определяется распределением в этом пространстве масс и их движением. При этом поле тяготения, обусловленное массами и вызывающее, в свою очередь, движение масс, рассматривается в общей теории относительности как проявление искривлённости пространства-времени и определяется, как и М. п.-в., величинами gik . Искривлённость пространства-времени означает, в частности, как отклонение чисто пространственной геометрии от евклидовой, так и зависимость скорости течения времени от поля тяготения.
Лит . см. при статьях Относительности теория , Тяготение .
Г. А. Зисман.
Метрика (свид-во о рождении)
Ме'трика, принятое в обиходе название свидетельства о рождении.
Метрика (стихосложение)
Ме'трика (греч. metrike, от métron — мера, размер), 1) совокупность законов. строения стиха; то же, что стихосложение . 2) Наука о законах строения стиха; то же, что стиховедение. Преимущественно термин «М.» применяется к ранним эпохам изучения стиха — тем, в которые стихосложение понималось как свод нормативных правил (античная, арабская, индийская М.). 3) Иногда под М. понимается лишь. один из разделов стиховедения — учение о строении стихотворной строки (наряду с эвфоникой — учением о сочетании звуков, строфикой — учением о сочетании строк); в таком случае обычно используется выражение «метрика и ритмика» без точного разграничения этих понятий (см. Метр ).