Большая Советская Энциклопедия (ТВ) - Большая Советская Энциклопедия "БСЭ" (читать книги онлайн txt) 📗
2) Согласно классическим законам, средняя энергия теплового движения частицы »kT и энергия возбуждения Т. т. »NkT, где N — число частиц, составляющих Т. т. Уменьшение энергии Т. т. с понижением его температуры идёт быстрее, чем предусматривает классическая физика: дискретный (квантовый) характер энергетического спектра Т. т. приводит к «вымораживанию» движений при Т ® 0 К, причём чем больше расстояние между уровнями энергии, тем при более высокой температуре «вымерзает» соответствующее движение. Поэтому различные движения в Т. т. существенны при различных температурах.
3) В кристаллическом Т. т. возможны статические возбуждённые состояния: частицы располагаются не совсем так, как им «положено» из соображений минимума энергии. Неправильное расположение атома или его отсутствие (см. Дефекты в кристаллах) приводят к большому повышению энергии взаимодействия атомов вблизи дефекта, однако в устойчивом состоянии неправильно расположенных атомов сравнительно мало. Аморфное тело, энергия которого больше, чем энергия соответствующего кристалла, как правило, устойчиво (метастабильно) из-за больших потенциальных барьеров (следствие ближнего порядка), отделяющих метастабильные положения атомов от стабильных.
4) Разнообразие сил, действующих между частицами, составляющими Т. т., приводит к тому, что в кристаллах при определённых условиях могут проявляться свойства газов, жидкостей, плазмы. Например, ферромагнетик при T = 0 К. — упорядоченная система ориентированных атомных магнитных моментов. При повышении температуры эта строгая ориентация нарушается тепловым движением, а при Т = Тс (Кюри точка) полностью исчезает и Т. т. переходит в парамагнитное состояние. Величина Тс связана с энергией Um взаимодействия между соседними магнитными моментами соотношением: kTc » Uм. При Т ³ Тс атомные магнитные моменты ведут себя, как «газ магнитных стрелок», например магнитная восприимчивость твёрдого парамагнетика имеет ту же температурную зависимость, что и газообразного (см. ниже). Др. пример: металл можно рассматривать как ионный остов, погруженный в электронную жидкость. Благодаря устойчивому положению ионов металл является Т. т., но часть электронов в нём не связана с определёнными узлами кристаллической решётки, это — электроны проводимости. Их взаимодействие друг с другом сближает свойства совокупности электронов проводимости металлов со свойствами квантовой жидкости. В некоторых случаях (например, под воздействием электромагнитного поля высокой частоты, которая превышает частоту столкновений электронов) электронная жидкость в проводниках ведёт себя, как плазма (см. Плазма твёрдых тел).
5) Движения атомных частиц в Т. т. весьма разнообразны и проявляются в различных свойствах Т. т. Все движения можно разбить на 3 типа: а) диффузия собственных или чужеродных атомов. Элементарный акт диффузии — флуктуационное перемещение атома из занятого им положения в соседнее — свободное. Как правило, время «оседлой» жизни атома значительно больше, чем время перемещения — атом совершает редкие случайные скачки, вероятность которых возрастает с ростом температуры. Диффузионное перемещение — сравнительно редкий пример классического движения атомов в Т. т. б) Коллективные движения частиц, простейший пример которых — колебания кристаллической решётки. Энергия колеблющихся атомов приближённо равна сумме энергий отд. колебаний. При высоких температурах средняя энергия каждого колебания ~ kT, при низких температурах она определяется формулой Планка
£ кТ. Хотя в колебаниях решётки принимают участие все атомы Т. т., они атомного масштаба (напомним: средняя энергия поступательного движения частицы в классическом газе равна kT). Др. пример: электронное возбуждение атома, не локализуемое на определённом узле кристаллической решётки, а передающееся от узла к узлу. Энергия такого движения (оно может быть возбуждено при поглощении кванта света или при повышении температуры) порядка энергии возбуждения отдельного атома. Коллективные движения атомного масштаба имеют дискретную структуру. Например, энергия колебания атомов с частотой со может быть равна , 2, 3 и т. д. Это позволяет каждому движению сопоставить квазичастицу. Квазичастицы, описывающие колебания атомов, называются фононами. в) При низких температурах (вблизи Т = 0) К) атомные частицы в некоторых Т. т. (и в жидком Не) могут совершать движение, квантовое по своей природе, но макроскопическое по масштабу. Наиболее изучено движение электронов в сверхпроводниках и атомов в сверхтекучем гелии. Характерная черта сверхпроводящего и сверхтекучего движения — строгая согласованность в поведении частиц, обусловленная взаимодействием между ними. Для «выхода из коллектива» частица должна преодолеть некоторую энергию (энергетическая щель). Существование энергетической щели делает сверхпроводящее и сверхтекучее движение устойчивым (незатухающим) (см. Сверхтекучесть, Сверхпроводимость).6) Знание атомной структуры Т. т. и характера движения частиц в Т. т. (энергетический спектр) позволяет установить, какие квазичастицы ответственны за то или др. явление или свойство. Например, высокая электропроводность металлов обусловлена электронами проводимости, а теплопроводность — электронами проводимости и фононами; некоторые особенности поглощения света в диэлектриках — экситонами;ферромагнитный резонанс — магнонами и т. д. Отличие количеств. характеристик различных движений позволяет отделить одно движение от другого. Например, из-за большого различия в массах скорость движения ионов в металлах и полупроводниках очень мала по сравнению со скоростью электронов. Поэтому в некотором приближении (называемом адиабатическим), рассматривая движение электронов, ионы можно считать неподвижными, а движение ионов определять усреднёнными (по быстрому движению) характеристиками электронов. Часто независимость различных типов движения Т. т. обусловлена малой энергией взаимодействия между степенями свободы различной природы. Например, в ферромагнетике колебания атомов и спиновые волныимеют энергию и скорость приблизительно одного масштаба, но связь между ними мала, потому что малы магнитострикционные силы (см. Магнитострикция). Однако в некоторых случаях имеет место резонансное взаимодействие между разнородными волновыми процессами, когда их частоты и длины волн совпадают. Это приводит к «перепутыванию» движений; например, колебание атомов (звук) можно возбудить переменным магнитным полем, а звуковая волна может самопроизвольно превратиться в спиновую.
7) Все Т. т. при достаточном повышении температуры плавятся (или возгоняются). Подводимая к телу в процессе плавления теплота тратится на разрыв межатомных связей. температура плавления Тпл, характеризующая силу связи атомных частиц в Т. т., различна: у молекулярного водорода Тпл = -259,1 °С, у вольфрама 3410 ± 20 °С, а у графита более 4000 °С. Исключение составляет твёрдый 3Не, который плавится под давлением при понижении температуры (см. Померанчука эффект). При изменении внешних условий (давления, температуры, магнитного поля и т. д.) в Т. т. происходят скачкообразные изменения структуры и свойств — фазовые переходы 1-го и 2-го рода. Наличие у Т. т. различных устойчивых кристаллических структур (модификаций) называется полиморфизмом (например, графит и алмаз, белое и серое олово). Переход из одной модификации в другую иногда происходит как фазовый переход 1-го рода, а иногда как переход 2-го рода. Примерами фазового перехода 2-го рода служат переход веществ из парамагнитного состояния в ферро- или антиферромагнитное, переход в сверхпроводящее состояние из нормального при отсутствии магнитного поля, упорядочение ряда сплавов, возникновение сегнетоэлектрических свойств у некоторых диэлектриков и др.