Большая Советская Энциклопедия (ЛИ) - Большая Советская Энциклопедия "БСЭ" (лучшие книги без регистрации .txt) 📗
Для Л. п. векторного пространства естественным образом определяются операции сложения и умножения: суммой двух Л. п. А и В называют Л. п. С, переводящее любой вектор х в вектор Cx = Ax + Вх; произведением Л. п. А и В называют результат их последовательного применения: С = AB, если Cx = А(Вх).
В силу этих определений совокупность всех Л. п. векторного пространства образует кольцо. Матрица суммы (произведения) Л. п. равна сумме (произведению) матриц Л. п. слагаемых (сомножителей); при этом существен порядок множителей, так как произведение Л. и., как и матриц, не обладает свойством коммутативности. Л. п. можно также умножать на числа: если Л. п. А переводит вектор х в вектор у = Ax, то aА переводит х в aу. Примеры операций над Л. п.: 1) Пусть А и В означают операции проектирования па оси Ox и Оу в трёхмерном пространстве; А + В будет проектированием на плоскость хОу, а AB = 0. 2) А и В — повороты плоскости вокруг начала координат на углы j и
; AB будет поворотом на угол j + . 3) Произведение единичного Л. п. Е на число a будет преобразованием подобия с коэффициентом растяжения (или сжатия) a.Л. п. В называют обратным к Л. п. А (и обозначают А-1), если BA = Е (или AB = Е). Если Л. п. А переводило вектор х в вектор у, то Л. п. А-1 переводит у обратно в х. Л. п., обладающее обратным, называют невырожденным; такие Л. п. характеризуются также тем, что определитель их матрицы не равен нулю. Некоторые классы Л. п. заслуживают особого упоминания. Обобщением поворотов двумерных и трёхмерных евклидовых пространств являются ортогональные (или унитарные — в комплексных пространствах) Л. п. Ортогональные Л. п. не изменяют длин векторов (а следовательно, и углов между ними). Матрицы этих Л. п. в ортонормированной системе координат также называются ортогональными (унитарными): произведение ортогональной матрицы на её транспонированную даёт единичную матрицу: åkaikajk = åkakiakj = 0 при i ¹ j, åka2ik = åka2ki = 1 (в комплексном пространстве åkaik
jk = åkakikj = 0, åk|ajk|2 = åk|aki|2 = 1). Симметрическим (эрмитовым, или самосопряжённым, — в комплексном пространстве) Л. п. называют такое Л. п., матрица которого симметрическая: aij = aji (или (aij = ij). Симметрические Л. п. осуществляют растяжение пространства с разными коэффициентами по неск. взаимно ортогональным направлениям. С симметрическими Л. п. связана теория квадратичных форм (или эрмитовых форм в комплексном пространстве).Приведённое выше определение Л. п. в векторном пространстве, не использующее координатную систему, без всяких изменений распространяется и на бесконечномерные (в частности, функциональные) пространства. Л. п. в бесконечномерных пространствах принято называть линейными операторами.
Лит.: Александров П. С., Лекции по аналитической геометрии..., М., 1968; Мальцев А. И., Основы линейной алгебры, 3 изд., М., 1970; Ефимов Н. В., Розендорн Э. P., Линейная алгебра и многомерная геометрия, М., 1970.
Линейное программирование
Лине'йное программи'рование, математическая дисциплина, посвященная теории и методам решения задач об экстремумах линейных функций на множествах, задаваемых системами линейных неравенств и равенств; Л. п. является одним из разделов математического программирования.
Типичным представителем задач Л. п. является следующая: найти максимум линейной функции
(1)
при условиях
, i = 1, 2, ..., m, (2)
xj³ 0, j = 1, 2, n, (3)
где cj, aij и bi — заданные величины.
Задачи Л. п. являются математическими моделями многочисленных задач технико-экономического содержания. Рассмотрим в качестве примера следующую задачу планирования работы предприятия. Для производства однородных изделий необходимо затратить различные производственные факторы — сырьё, рабочую силу, станочный парк, топливо, транспорт и т. д. Обычно имеется несколько отработанных технологических способов производства, причём в этих способах затраты производственных факторов в единицу времени для выпуска изделий различны. Количество израсходованных производственных факторов и количество изготовленных изделий зависит от того, сколько времени предприятие будет работать по тому или иному технологическому способу. Ставится задача рационального распределения времени работы предприятия по различным технологическим способам, т. е. такого, при котором будет произведено максимальное количество изделий при заданных ограниченных затратах каждого производственного фактора. Формализуем задачу. Пусть имеется n технологических способов производства изделий и m производственных факторов. Введём обозначения: cj— количество изделий, выпускаемых в единицу времени при работе по j-му технологическому способу; aij— расход i-го производственного фактора в единицу времени при работе по j-му технологическому способу; bi — имеющиеся ресурсы i-го производственного фактора и xj— планируемое время работы по j-му технологическому способу. Величина
означает общий расход i-го производственного фактора при плане х(i) = (x(i)1, x(i)2, ..., x(i)n). И поскольку ресурсы ограничены величинами bi, то возникают естественные условия (2) и (3). Ставится задача отыскания такого распределения времени (оптимального плана) х* = (x*1, х*2, ..., х* n) работы по каждому технологическому способу, при котором общий объём продукции
был бы максимальным, то есть задача (1) — (3). Другим характерным примером прикладных задач Л. п. является транспортная задача.Термин «Л. п.» нельзя признать удачным, однако смысл его в том, что в Л. п. решаются задачи составления оптимальной программы (плана) действий. В связи с этим Л. п. можно рассматривать как один из математических методов в исследованиях операций (см. Операций исследование).
Функцию (1) в Л. п. принято называть целевой функцией, или критерием эффективности, вектор х = (x1, x2, ..., xn) — планом, вектор x*=(x*1, x*2, ..., x*n) — оптимальным планом, а множество, определяемое условиями (2) — (3), — допустимым, или множеством планов. Одним из основных методов решения задач Л. п. является симплексный метод. Геометрически его идея состоит в следующем. Допустимое множество (2) — (3) представляет собой выпуклое многогранное множество (если оно ограничено, то — многомерный выпуклый многогранник). Если задача Л. п. имеет решение, то существует вершина х* многогранного множества, являющаяся оптимальным планом. Симплексный метод состоит в таком направленном переборе вершин, при котором значение целевой функции возрастает от вершины к вершине. Каждой вершине соответствует система уравнений, выбираемая спец. образом из системы неравенств (2) — (3), поэтому вычислительная процедура симплексного метода состоит в последовательном решении систем линейных алгебраических уравнений. Простота алгоритма делает этот метод удобным для его реализации на ЭВМ.