Большая Советская Энциклопедия (БИ) - Большая Советская Энциклопедия "БСЭ" (книги читать бесплатно без регистрации TXT) 📗
Н. П. Наумов.
Бионика
Био'ника (от греч. biōn — элемент жизни, буквально — живущий), наука, пограничная между биологией и техникой, решающая инженерные задачи на основе анализа структуры и жизнедеятельности организмов. Б. тесно связана с биологией, физикой, химией, кибернетикой и инженерными науками — электроникой, навигацией, связью, морским делом и др.
Идея применения знаний о живой природе для решения инженерных задач принадлежит Леонардо да Винчи, который пытался построить летательный аппарат с машущими крыльями, как у птиц — орнитоптер. Появление кибернетики, рассматривающей общие принципы управления и связи в живых организмах и машинах, стало стимулом для более широкого изучения строения и функций живых систем с целью выяснения их общности с техническими системами, а также использования полученных сведений о живых организмах для создания новых приборов, механизмов, материалов и т.п. В 1960 в Дайтоне (США) состоялся первый симпозиум по Б., который официально закрепил рождение новой науки.
Основные направления работ по Б. охватывают следующие проблемы: изучение нервной системы человека и животных и моделирование нервных клеток — нейронов — и нейронных сетей для дальнейшего совершенствования вычислительной техники и разработки новых элементов и устройств автоматики и телемеханики (нейробионика); исследование органов чувств и других воспринимающих систем живых организмов с целью разработки новых датчиков и систем обнаружения; изучение принципов ориентации, локации и навигации у различных животных для использования этих принципов в технике; исследование морфологических, физиологических, биохимических особенностей живых организмов для выдвижения новых технических и научных идей.
Исследования нервной системы показали, что она обладает рядом важных и ценных особенностей и преимуществ перед всеми самыми современными вычислительными устройствами. Эти особенности, изучение которых очень важно для дальнейшего совершенствования электронно-вычислительных систем, следующие: 1) Весьма совершенное и гибкое восприятие внешней информации вне зависимости от формы, в которой она поступает (например, от почерка, шрифта, цвета текста, чертежей, тембра и других особенностей голоса и т.п.). 2) Высокая надёжность, значительно превышающая надёжность технических систем (последние выходят из строя при обрыве в цепи одной или нескольких деталей; при гибели же миллионов нервных клеток из миллиардов, составляющих головной мозг, работоспособность системы сохраняется). 3) Миниатюрность элементов нервной системы: при количестве элементов 1010—1011 объём мозга человека 1,5 дм3. Транзисторное устройство с таким же числом элементов заняло бы объём в несколько сот, а то и тысяч м3. 4) Экономичность работы: потребление энергии мозгом человека не превышает нескольких десятков вт. 5) Высокая степень самоорганизации нервной системы, быстрое приспособление к новым ситуациям, к изменению программ деятельности.
Попытки моделирования нервной системы человека и животных были начаты с построения аналогов нейронов и их сетей. Разработаны различные типы искусственных нейронов (рис. 1). Созданы искусственные «нервные сети», способные к самоорганизации, т. е. возвращающиеся в устойчивые состояния при выводе их из равновесия. Изучение памяти и других свойств нервной системы — основной путь создания «думающих» машин для автоматизации сложных процессов производства и управления. Изучение механизмов, обеспечивающих надёжность нервной системы, очень важно для техники, т.к. решение этой первоочередной технической проблемы даст ключ к обеспечению надёжности ряда технических систем (например, оборудования самолёта, содержащего 105 электронных элементов).
Исследования анализаторных систем. Каждый анализатор животных и человека, воспринимающий различные раздражения (световые, звуковые и др.), состоит из рецептора (или органа чувств), проводящих путей и мозгового центра. Это очень сложные и чувствительные образования, не имеющие себе равных среди технических устройств. Миниатюрные и надёжные датчики, не уступающие по чувствительности, например, глазу, который реагирует на единичные кванты света, термочувствительному органу гремучей змеи, различающему изменения температуры в 0,001°С, или электрическому органу рыб, воспринимающему потенциалы в доли микровольта, могли бы существенно ускорить ход технического прогресса и научных исследований.
Через наиболее важный анализатор — зрительный — в мозг человека поступает большая часть информации. С инженерной точки зрения интересны следующие особенности зрительного анализатора: широкий диапазон чувствительности — от единичных квантов до интенсивных световых потоков; изменение ясности видения от центра к периферии; непрерывное слежение за движущимися объектами; адаптация к статичному изображению (для рассматривания неподвижного объекта глаз совершает мелкие колебательные движения с частотой 1—150 гц). Для технических целей представляет интерес разработка искусственной сетчатки. (Сетчатка — очень сложное образование; например, глаз человека имеет 108 фоторецепторов, которые связаны с мозгом при помощи 106 ганглиозных клеток.) Один из вариантов искусственной сетчатки (аналогичной сетчатке глаза лягушки) состоит из 3 слоев: первый включает 1800 фоторецепторных ячеек, второй — «нейроны», воспринимающие положительные и тормозные сигналы от фоторецепторов и определяющие контрастность изображения; в третьем слое имеется 650 «клеток» пяти разных типов. Эти исследования дают возможность создать следящие устройства автоматического распознавания. Изучение ощущения глубины пространства при видении одним глазом (монокулярном зрении) дало возможность создать определитель глубины пространства для анализа аэрофотоснимков.
Ведутся работы по имитации слухового анализатора человека и животных. Этот анализатор тоже очень чувствителен — люди с острым слухом воспринимают звук при колебании давления в слуховом проходе около 10 мкн/м2 (0,0001 дин/см2). Технически интересно также изучение механизма передачи информации от уха к слуховой области мозга. Изучают органы обоняния животных с целью создания «искусственного носа» — электронного прибора для анализа малых концентраций пахучих веществ в воздухе или воде [некоторые рыбы чувствуют концентрацию вещества в несколько мг/м3(мкг/л)]. Многие организмы имеют такие анализаторные системы, каких нет у человека. Так, например, у кузнечика на 12-м членике усиков есть бугорок, воспринимающий инфракрасное излучение, у акул и скатов есть каналы на голове и в передней части туловища, воспринимающие изменения температуры на 0,1°С. Чувствительностью к радиоактивным излучениям обладают улитки и муравьи. Рыбы, по-видимому, воспринимают блуждающие токи, обусловленные электризацией воздуха (об этом свидетельствует уход рыб на глубину перед грозой). Комары двигаются по замкнутым маршрутам в пределах искусственного магнитного поля. Некоторые животные хорошо чувствуют инфра- и ультразвуковые колебания. Некоторые медузы реагируют на инфразвуковые колебания, возникающие перед штормом. Летучие мыши испускают ультразвуковые колебания в диапазоне 45—90 кгц, мотыльки же, которыми они питаются, имеют органы, чувствительные к этим волнам. Совы также имеют «приёмник ультразвука» для обнаружения летучих мышей.
Перспективно, вероятно, устройство не только технических аналогов органов чувств животных, но и технических систем с биологически чувствительными элементами (например, глаза пчелы — для обнаружения ультрафиолетовых и глаза таракана — для обнаружения инфракрасных лучей).
Большое значение в техническом конструировании имеют т. н. персептроны — «самообучающиеся» системы, выполняющие логические функции опознавания и классификации. Они соответствуют мозговым центрам, где происходит переработка принятой информации. Большинство исследований посвящено опознаванию зрительных, звуковых или иных образов, т. е. формированию сигнала или кода, однозначно соответствующего объекту. Опознавание должно осуществляться независимо от изменений изображения (например, его яркости, цвета и т.п.) при сохранении его основного значения. Такие самоорганизующиеся познающие устройства работают без предварительного программирования с постепенной тренировкой, осуществляемой человеком-оператором; он предъявляет изображения, сигнализирует об ошибках, подкрепляет правильные реакции. Входное устройство персептрона — его воспринимающее, рецепторное поле; при опознавании зрительных объектов — это набор фотоэлементов.