Электроника?.. Нет ничего проще! - Эймишен Жан-Поль (полная версия книги .TXT) 📗
Л. — О, не всегда! Терморезисторы (о них я еще буду говорить) представляют собой полупроводниковые приборы, сопротивление которых при небольших токах (не вызывающих заметного нагревания) уменьшается при повышении температуры.
Впрочем, изменение сопротивления терморезисторов происходит значительно быстрее, чем в классических резисторах; изменение может достигать 4 % на 1 °C, т. е. в 12 раз больше, чем у металлов. Поэтому эти приборы называют терморезисторами или элементами с отрицательным ТКС (что означает температурный коэффициент сопротивления) [5].
Н. — Но если терморезисторы в 12 раз чувствительнее к температуре, чем металлические резисторы, то я полагаю, что последними для измерений температуры никогда не пользуются.
Л. — Ты не прав. Классические резисторы используются очень широко, так как они выдерживают температуры, которые выводят терморезисторы из строя. А кроме того, зависимость сопротивления резисторов от температуры очень простая, почти линейная, тогда как сопротивление терморезисторов подчиняется относительно сложной закономерности. Резистор из платины может использоваться для измерения температуры от нескольких градусов выше абсолютного нуля (около —260 °C) до 1500 °C. Но имеются также термоэлектрические пары, прочно соединенные два металла (или полупроводниковых материала), контакт между которыми при нагревании превращается в настоящую батарею (рис. 21).
Рис. 21. Термопара состоит из двух спаянных кусочков разных металлов. При нагревании места спая на выводах термопары появляется напряжение, повышающееся при увеличении температуры.
Н. — Чудесно! Значит, достаточно подогреть такие пары металлов и получай электричество. Так это же прекрасное будущее для электростанций!
Л. — Конечно. В частности, в СССР, где занимались этой проблемой, научились получать электроэнергию для транзисторного радиоприемника от батареи термопар, расположенной вокруг стекла керосиновой лампы, используемой для освещения.
Н. — А как измеряют высокие температуры, например выше 2000 °C?
Л. — Как ты знаешь, все сильно нагретые тела испускают свет — это форма излучения энергии. Ученые установили, что при не очень высоких температурах полная мощность, излучаемая квадратным сантиметром поверхности нагретого тела, примерно пропорциональна четвертой степени абсолютной температуры Т нагретого тела (т. е. его температуры выше абсолютного нуля, который соответствует —273 °C) [6]. Измерив излучаемую мощность, можно узнать температуру. Этот метод используется для измерения даже очень высоких температур. Но в этих случаях прибегают к слишком смелой экстраполяции законов излучения энергии, а справедливость этих законов для очень высоких температур опровергнута проведением термоядерных взрывов: по этим законам водородная бомба не может взорваться.
Н. — Лично я предпочел бы, чтобы эти законы оказались правильными!!!
Л. — Я тоже, но опыт показал, что бомба взрывается. Следовательно, эти экстраполяции несколько фантастические. Поэтому, когда мне говорят, что температура такой-то звезды равна б миллионам градусов, то я воспринимаю это примерно так же, как если бы мне сказали: «Ее температура 3 тонны или 10 минут».
Н. — Значит, измерения излучения ровным счетом ничего не стоят?.
Л. — Не совсем так. Например, термопары позволили измерить температуру в различных точках Луны и некоторых планет; для этого пришлось полученное с помощью телескопа изображение небесного тела или части небесного тела зеркалом направить на термопару, нагрев которой изменяется в зависимости от температуры наблюдаемого в телескоп тела. Эти измерения дали прекрасные результаты.
Н. — Охотно признаю, но мне хотелось бы, чтобы ты, наконец, рассказал мне о фотоэлементах.
Л. — Я как раз и подхожу к этому вопросу. Но помнишь ли ты, каким образом вырывают электроны из катода электронной лампы?
Н. — Конечно. Для этого повышают температуру тела, что увеличивает подвижность молекул; движущиеся молекулы так толкают электроны, что в конечном счете они вылетают из вещества.
Л. — Примерно так. Для большей точности я добавлю, что вызываемое повышением температуры увеличение энергии электронов позволяет им прорваться через поверхностный слой. Так вот, Незнайкин, энергию электронов можно также увеличить, облучив светом вещество, в котором они находятся…
Н. — Великолепно! Но тогда нагреваемые катоды в электронных лампах можно заменить освещаемыми катодами?
Л. — Твое предложение большой практической ценности не представляет, так как получаемый таким образом ток весьма мал. Чтобы сделать фотоэлемент (рис. 22), нужно взять пластинку, покрытую веществом, способным под воздействием света испускать электроны, и поместить ее в колбу, из которой откачан воздух. В этой же колбе размещается еще одна пластинка, имеющая положительный потенциал относительно первой, называемой катодом. Электроны, испускаемые катодом под воздействием падающего на него света, пойдут к другому электроду (аноду), в результате чего в цепи появляется ток, значение которого зависит от освещенности катода.
Рис. 22. Фотоэлектрический элемент. Под воздействием света катод испускает электроны, а анод эти электроны собирает.
Н. — Как я вижу, фотоэлемент не так уж сложен. Это просто диод, у которого катод не нагрет, а освещен. Но скажи мне, пожалуйста, почему ты нарисовал анод таким маленьким, как кусочек тонкой проволоки? Его следовало бы сделать значительно больше.
Л. — В этом нет необходимости и, кроме того, не забывай, что анод должен пропускать весь свет и не должен отбрасывать на катод тень. А кроме того, для небольшого анодного тока Ia (который редко достигает десятка микроампер и часто составляет всего лишь доли микроампера) большой анод не нужен.
Н. — До чего же маленькие токи в фотоэлементе. А кроме того, наверно, очень неудобно размещать анод на пути светового потока!
Л. — Как ты увидишь, мы очень легко приспосабливаемся к этим маленьким токам. Что же касается размещения анода, то можно сделать катод полупрозрачным и нанести его фотослой на внутреннюю стенку колбы: лучи света будут падать на фотослой катода с одной стороны (внешней), а электроны вылетать с другой стороны (внутренней), и тогда отпадет необходимость располагать анод со стороны источника света. И уж если мы начали говорить о катоде, позволь мне сказать, что имеется большое количество различных катодов. Катоды из цезия, нанесенного на слой сурьмы, чувствительны к синим и фиолетовым лучам; катоды из цезия, нанесенного на окись серебра, чувствительны в основном к красным и инфракрасным лучам. И наконец, запомни, что анодный ток Iа почти не зависит от анодного напряжения — он зависит только от освещенности катода (эта зависимость почти прямо пропорциональна, что позволяет установить чувствительность фотоэлемента в микроамперах на люмен [7]). В принципе вакуумный фотоэлемент ведет себя примерно так же, как диод в режиме насыщения, ток насыщения которого зависит от температуры нити накала.