Искусство схемотехники. Том 1 (Изд.4-е) - Хоровиц Пауль (читать книги онлайн бесплатно без сокращение бесплатно .txt) 📗
Рис. 1.75. Двухполупериодный выпрямитель на основе трансформатора со средней точкой.
Выходное напряжение здесь в 2 раза меньше, чем в схеме мостового выпрямителя. Схема двухполупериодного однофазного выпрямителя не является эффективной с точки зрения использования трансформатора, так как каждая половина вторичной обмотки используется только в одном полупериоде. В связи с этим ток в обмотке за этот интервал времени в 2 раза больше, чем в простой двухполупериодной схеме. Согласно закону Ома, температура нагрева обмотки пропорциональна произведению I2R, значит, за время в 2 раза меньшее нагрев будет в 4 раза больше или в среднем больше по сравнению с эквивалентной двухполупериодной схемой.
Трансформатор для этой схемы следует выбирать так, чтобы его предельный ток был в 1,4 (в √2) раз больше, чем у трансформатора мостовой схемы, в противном случае такой выпрямитель будет более дорогим и более громоздким, чем мостовой.
Упражнение 1.28. Это упражнение поможет вам разобраться в механизме нагрева обмотки, пропорционального I2R, и понять, в чем проявляется недостаток однофазного выпрямителя. На какое предельное минимальное значение тока должен быть расчитан плавкий предохранитель, чтобы в цепи мог протекать ток, изменяющийся согласно графику, показанному на рис. 1.76, и имеющий среднюю амплитуду 1 А?
Подсказка: предохранитель «перегорает», когда в цепи начинает протекать ток, превышающий предельное значение тока предохранителя. При этом в предохранителе расплавляется металлический проводник (температура его нагрева пропорциональна I2R).
Допустим, что и в нашем случае температурная постоянная времени для плавкого предохранителя значительно больше, чем период прямоугольных колебаний, т. е. предохранитель реагирует на значение I2, осредненное за несколько периодов входного сигнала.
Рис. 1.76.
Расщепление напряжения питания. Широко распространена мостовая однофазная двухполупериодная схема выпрямителя, показанная на рис. 1.77. Она позволяет расщеплять напряжение питания (получать на выходе одинаковые напряжения положительной и отрицательной полярности).
Рис. 1.77. Формирование двухполярного (расщепленного) напряжения питания.
Эта схема эффективна, так как в каждом полупериоде входного сигнала используются обе половины вторичной обмотки. Выпрямители с умножением напряжения. Схема, показанная на рис. 1.78, называется удвоителем напряжения.
Рис. 1.78. Удвоитель напряжения.
Для того чтобы понять, как работает эта схема, представьте, что она состоит из двух последовательно соединенных выпрямителей. Фактически эта схема является двухполупериодным выпрямителем, так как она работает в каждом полупериоде входного сигнала — частота пульсаций в 2 раза превышает частоту колебаний питающей сети (для сети с частотой 60 Гц, как в США, частота пульсаций составляет 120 Гц). Разновидности этой схемы позволяют увеличивать напряжение в 3, 4 и более раз.
На рис. 1.79 показаны схемы выпрямителей, обеспечивающие увеличение напряжения в 2, 3 и 4 раза, в которых один конец обмотки трансформатора заземлен.
Рис. 1.79. Схемы умножения напряжения; наличие источника с плавающим напряжением в представленных схемах не обязательно.
1.29. Стабилизаторы напряжения
Путем увеличения емкости конденсатора можно уменьшить пульсации напряжения до требуемого уровня. Такой способ борьбы с пульсациями имеет два недостатка:
1. Конденсаторы нужной емкости могут оказаться недопустимо громоздкими и дорогими.
2. Даже в том случае, когда пульсации уменьшены до пренебрежимо малого уровня, наблюдаются колебания выходного напряжения, обусловленные уже другими причинами, например, изменения входного напряжения сети ведут к флуктуациям выходного напряжения постоянного тока. Кроме того, изменение выходного напряжения может быть вызвано изменением тока нагрузки, так как трансформатор, диод и другие элементы обладают конечным внутренним сопротивлением. Иначе говоря, для эквивалентной схемы источника питания постоянного тока справедливо соотношение R > 0.
Более правильный подход к разработке источника питания состоит в том, чтобы с помощью конденсатора уменьшить пульсации до некоторого уровня (чтобы они составляли, например, 10 % от напряжения постоянного тока), а затем, для устранения остатков пульсаций, использовать схему с обратной связью. Такая схема содержит управляемый резистор (транзистор), подключаемый последовательно к выходу схемы, за счет которого уровень выходного напряжения поддерживается постоянным (рис. 1.80).
Рис. 1.80. Стабилизатор напряжения постоянного тока.
Подобные стабилизаторы напряжения используют почти повсеместно в качестве источников питания для электронных схем. В настоящее время промышленность выпускает стабилизаторы напряжения в виде законченных, готовых к использованию модулей. На основе стабилизатора напряжения можно построить удобный для работы источник питания, которому не страшны никакие опасности (короткие замыкания, перегрев и т. п.) и характеристики которого удовлетворяют самым высоким требованиям, предъявляемым к источнику напряжения (например, внутреннее сопротивление такого источника измеряется в миллиомах).
Источники питания постоянного тока со стабилизаторами напряжения мы рассмотрим в гл. 6.
1.30. Примеры использования диодов
Выпрямление сигналов. Бывают такие случаи, помимо тех, что мы рассмотрели выше, когда сигнал должен иметь только одну полярность. Если входной сигнал не является синусоидальным, то говорить о его выпрямлении не принято, хотя процесс выпрямления применим и к нему. Например, требуется получить последовательность импульсов, совпадающих с моментами нарастания прямоугольного сигнала. Проще всего продифференцировать прямоугольный сигнал, а затем выпрямить его (рис. 1.81).
Рис. 1.81.
Следует всегда иметь в виду, что прямое напряжение диода составляет приблизительно 0,6 В. На выходе нашей схемы, например, сигнал будет получен лишь в том случае, когда двойная амплитуда прямоугольного входного сигнала будет не меньше 0,6 В. Это условие накладывает определенные ограничения на разработку схемы, но известны приемы, с помощью которых их можно преодолеть. Например, можно воспользоваться диодом Шоттки, для которого прямое напряжение составляет около 0,25 В (можно также использовать так называемый обращенный диод с нулевым прямым напряжением, но его применение ограничено из-за того, что он имеет малое напряжение пробоя). Можно также воспользоваться схемой, показанной на рис. 1.82.