Электроника?.. Нет ничего проще! - Эймишен Жан-Поль (полная версия книги .TXT) 📗
Н. — Эта система очень хитрая. Но как ты заставишь контакт К вибрировать?
Л. — Посмотри внимательно на схему: я посылаю в катушку переменный ток, например с частотой 50 гц. В этой катушке имеется магнит, который заставляет реле замыкаться только 50 раз в 1 сек, а не 100…
Н. — Я знаю, в чем заключается эта хитрость: именно такой метод применяется в головных телефонах или в старых магнитных громкоговорителях. Но скажи мне, нельзя ли здесь использовать тот же метод, что и в динамических громкоговорителях, и заставить подвижную катушку приводить в действие контакт?
Л. — Это не только возможно, но уже начинает применяться на практике, и я думаю, что этому методу принадлежит будущее.
Н. — Хорошо, это мне больше нравится. Но почему ты сказал, что эти специальные реле так дороги? Ведь скорость его срабатывания не так уж велика.
Л. — Подумай сначала о количестве срабатываний, которое должен выдержать контакт. При 50 замыканиях и размыканиях в секунду это составит 180 000 в час или 4 300 000 в сутки.
Н. — Сжалься и не говори мне, сколько это составит в месяц, я и без этого уже чувствую себя уставшим!
Л. — Реле устанет раньше тебя: модели хорошего качества выдерживают не более 100 ч работы. А, кроме того, необходимо также, чтобы катушка не наводила никаких напряжений в образованной контактом цепи, не говоря уже о возможных остаточных напряжениях, которые могут возникнуть, когда контакт реле замыкается.
Н. — Ну, с этим-то я не согласен! Когда два металлических элемента соприкасаются, цепь замыкается накоротко, разве не так?
Л. — Да, если эти два металла идентичны. Но когда начинают измерять напряжения в милливольтах, все оказывается не так просто. И, наконец, запомни, что такие вибропреобразователи сложны в изготовлении… и весьма дороги.
Н. — И, следовательно, мы завершили главу о преобразователях, которые ты называешь преобразователями электрических величин.
Л. — Ну, до этого еще далеко. Правда, при всем желании мы не сможем рассмотреть всего, но я хотел бы спросить тебя, как думаешь ты использовать высокое переменное напряжение, например 30 000 в?
Н. — Прежде всего я буду очень осторожен.
Л. — И ты несомненно прав. Но этого недостаточно, ибо это напряжение все же нужно использовать. Я надеюсь, ты не станешь подавать это напряжение непосредственно на вход усилителя?
Н. — Оставь, пожалуйста, свой сарказм: я уже наговорил немало глупостей, но все же не дошел до такого абсурда. Для начала я приложу это напряжение к потенциометру…
Л. — Ой, ой! Если ты возьмешь обычный потенциометр, то он просто взорвется. Не следует все же забывать, что напряжение 30 000 в может дать искру в воздухе более 40 мм. В случае необходимости ты можешь сделать специальный делитель напряжения, показанный на рис. 5.
Рис. 5. Делитель высокого напряжения Uвх; сопротивление R состоит из большого количества резисторов, благодаря чему напряжение на каждом резисторе не слишком высокое.
Отношение напряжения на выходе к напряжению на входе делителя равно:
Н. — Хорошо. На мой взгляд, все это правильно, но почему сопротивление R состоит из нескольких последовательно соединенных резисторов?
Л. — Я нарисовал всего лишь четыре резистора, а на самом деле их придется поставить более ста, чтобы на выводах каждого из них было не более 300 в. За исключением специальных моделей резисторы не выдерживают большего напряжения. Но обрати внимание, что, несмотря на деление, полученное напряжение все еще относительно велико. Не забывай, что наше напряжение переменное и, следовательно, неизбежно проявляется паразитная емкость С, параллельная резистору r; это емкость соединительных проводов и емкость входа твоего электронного устройства, на которое ты подашь снятое с r напряжение.
Н. — Ну и что же? Мне от этого не жарко и не холодно.
Л. — Да от этого у тебя должны мурашки по спине бежать. На данной частоте твой конденсатор С может иметь не бесконечное сопротивление по сравнению с сопротивлением резистора r, тогда кратность твоего делителя напряжения упадет.
Н. — Транзистор меня побери! Об этом-то я не подумал! Неужели ничего нельзя сделать? А, вот и придумал: нужно уменьшить R и r!
Л. — Осторожно, иначе ты чрезмерно увеличишь расход энергии от источника Uвх. Может случиться так, что источник будет не в состоянии дать требуемую энергию, а кроме того, это привело бы к рассеянию на резисторах R чрезмерного количества энергии.
Н. — Мне пришла идея! Раз все наши неприятности происходят из-за паразитной емкости на выводах резистора r, то положение, вероятно, можно исправить, если поместить на выводах резисторов R соответствующий конденсатор.
Л. — Очень хорошо. Незнайкин, превосходная идея. Так действительно и делают, при этом компенсация будет безукоризненной, если (рис. 6) RC1 = rС2, где С2 — паразитная емкость.
Рис. 6. Для создания апериодического делителя напряжения R — r (чтобы отношение Uвх/Uвых не зависело от частоты) необходимо сделать RC1 = rС2.
Можно еще упростить схему, если ограничить ее применение не слишком низкими частотами; тогда получим емкостный делитель напряжения, схему которого я изобразил на рис. 7.
Рис. 7. В тех случаях, когда приходится иметь дело только с переменными напряжениями, делитель напряжения можно сделать на двух конденсаторах.
Я предполагаю, что входное сопротивление Rвх прибора, на который подается уменьшенное делителем напряжение Uвых, почти бесконечно по сравнению с реактивным сопротивлением С2; я могу сказать, что в каждый полупериод через С1 и С2 проходят одинаковые заряды. Отсюда можно вывести, что Uвых·С2 = (Uвх— Uвых)·С1 откуда получаем…
Н. — Нужный результат; я полностью тебе в этом доверяю.
Л. — Одной строки расчетов достаточно, чтобы установить, что