Online-knigi.org
online-knigi.org » Книги » Документальная литература » Научпоп » До предела чисел. Эйлер. Математический анализ - Коллектив авторов (читать книги онлайн бесплатно полностью без сокращений TXT) 📗

До предела чисел. Эйлер. Математический анализ - Коллектив авторов (читать книги онлайн бесплатно полностью без сокращений TXT) 📗

Тут можно читать бесплатно До предела чисел. Эйлер. Математический анализ - Коллектив авторов (читать книги онлайн бесплатно полностью без сокращений TXT) 📗. Жанр: Научпоп / Математика / Физика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

По приезду в Санкт-Петербург он очутился в компании таких талантливых ученых, как Кристиан Гольдбах и Даниил Бернулли, а также других, родом из Германии или говоривших на немецком языке. Изначально Эйлер должен был обучать применению математики и механики в физиологии, но очень скоро молодой преподаватель отделения медицины стал профессором математики (в 1733 году), поработав между делом также и профессором физики (в 1731 году). Этот важнейший для него переход от физиологии к физике произошел благодаря настойчивым обращениям в Академию его коллег Якоба Германа (1678-1733) и Даниила Бернулли.

Работа в Российской академии оказалась для Эйлера чрезвычайно благоприятным периодом: он быстро продвигался по служебной лестнице и завел крепкую дружбу с Даниилом Бернулли и секретарем Академии Кристианом Гольдбахом. Он много писал, постоянно узнавал что-то новое и начинал формировать научный авторитет во всем мире. В 1733 году, когда статус и финансовое положение Эйлера уже позволяли содержать собственный дом и семью, он женился на Катерине Гзель, дочери художника Академии. У них было 13 детей, из которых выжили только пятеро.

ПЕТЕРБУРГСКАЯ АКАДЕМИЯ

Петр I хотел подтолкнуть развитие своей империи с помощью образования и распространения знаний. В результате своих путешествий по Европе, где он подружился с Лейбницем, в 1724-1725 годах Петр решил открыть в столице страны Академию наук (Academia Scientiarum Imperialis Petropolitanae). За образец были взяты правила и структура Парижской академии, которая зависела от государственной поддержки и субсидий. Начальный период работы Академии наук был непростым: к нестабильной политической ситуации в стране — где правили дети, регенты и царицы — добавлялись интриги и подковерная борьба за власть. Все это подтолкнуло Эйлера, обеспокоенного тем, какой оборот принимали события, переехать из Санкт-Петербурга в Берлин, то есть из одной академии в другую.

В 1735 году у ученого возникла серьезная глазная инфекция. Есть мнение, что он заболел из-за стресса, вызванного срочной работой по определению широты Санкт-Петербурга. Так или иначе, Эйлер на некоторое время ослеп на правый глаз. Несмотря на то что зрение постепенно к нему вернулось, спустя три года ученый снова потерял зрение на правом глазу, уже окончательно. Однако, если верить словам, приписываемым

Эйлеру, его дух не был сломлен этим бесповоротным ухудшением зрения: "Так даже лучше, я не буду отвлекаться".

Он производил вычисления без видимых усилий, как другие люди дышат или как парят орлы.

Доминик Франсуа Жан Араго (1786-1853)

В 1738 году он получил Grand Prix Парижской академии — за который также боролись Вольтер и Эмили дю Шатле — за свое эссе об огне. Два года спустя, в 1740 году, Эйлер снова выиграл, обогнав Даниила Бернулли и Колина Маклорена, в этот раз за эссе об отливах и приливах.

ГАММА-ФУНКЦИЯ

Сразу же по приезду в Санкт-Петербург Эйлер одно за другим начал делать открытия, которые оказали огромное влияние на его научную жизнь. Считается, что первым из его моментов славы стало создание функции Г (заглавная греческая буква "гамма*), базового инструмента математического анализа. Намеки на Г появлялись в переписке между Даниилом Бернулли и Кристианом Гольдбахом уже около 1720 года, но только в 1729 году Эйлер впервые дал ей определение, а в 1814 году Адриен Мари Лежандр (1752-1833) ввел обозначение "гамма", записав его так: Г(x). Гамма-функция часто появляется в распределении вероятностей и активно используется физиками.

Обычно ее можно встретить в описании явлений, требующих применения экспоненциальных интегралов, типичных для атомной физики; она также распространена в астрофизике, динамике жидкостей и сейсмологии. Эта функция применяется во многих областях математики, особенно в комбинаторике и, в частности, в анализе дзета-функций Римана, имеющих огромное значение в изучении простых чисел. Целью Эйлера было найти способ интерполяции, как это называлось в то время, заключавшейся в том чтобы, зная крайние значения переменной, вывести ее промежуточные значения естественным образом, не прибегая к искусственным методам. Рассмотрим пример. Так называемый факториал натурального числа л! в арифметике, впервые встречающийся у Кристиана Крампа (1760-1826), равен

n! = n(n - 1)(n -2) · ... · 3 · 2 · 1,

то есть является произведением всех натуральных чисел, меньших или равных л. Факториал — чрезвычайно быстро растущая функция, как видно из следующей таблицы.

n

n!

0

1

1

1

2

2

3

6

4

24

5

120

6

720

7

5040

8

40 320

9

362 880

10

3628 800

100

9,3326215444 · 10

157

1000

4,0238726008 · 10

2567

10000

2,8462596809 · 10

35659

100000

2,824229408 · 10

456573

Факториал определен только для натуральных чисел; последовательность факториала прерывна. Интерполировать факториал означает продлевать его, пока не найдется непрерывная функция f(x) которая равна n!, когда значение х равно значению натурального n.

Почти банальным примером является понятие квадрата числа. Пусть дано натуральное число n, его квадрат будет равен n2 = n · n. Его можно интерполировать на любое вещественное число х, просто записав f(x) = х2. Эйлер интерполировал факториал n! и в 1729 году нашел непрерывную функцию f(x), которая вела себя как факториал, когда x = n был натуральным числом. Мы будем называть ее Г(х), что, собственно, и является ее современным обозначением. Эйлер определил значение

Г(x) в каждой точке посредством того, что сегодня мы бы назвали пределом:

Г(x) = limn→∞(n!nx)/(x (х+1)(х+2)...(х+n).

Сейчас вместо этого выражения используется интегральный вид:

Г(x) = ∫0 е-ttz-1dt.

Он более прост, с ним легче работать, и к тому же он действителен в области комплексных чисел. При глубоком изучении Г(х) из нее можно получить огромное количество интереснейших для математиков формул, например

Г(1 - z)Г(z) = π/sin(πz),

которая связывает гамма-функцию с числом π и тригонометрическими функциями.

ДРУГИЕ ФОРМЫ ГАММА-ФУНКЦИИ

Определить Г(х) можно разными способами. В XIX веке была особенно популярна формула Карла Вейерштрасса (1815-1897), в которой используется постоянная Эйлера (она обозначается буквой у" тоже "гамма", но строчная):

Г(z) = e-γz/z ∏n=1(1 + z/n)-1ez/n

Для этой функции верно:

Г(1)=1

Г(1 + х) = хГ(х).

При помощи гамма-функции выводится знаменитая формула Стирлинга (1692-1770), которая считается образцом красоты символов, поскольку в ней гармонически сочетаются постоянные π,е и число n:

Перейти на страницу:

Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


До предела чисел. Эйлер. Математический анализ отзывы

Отзывы читателей о книге До предела чисел. Эйлер. Математический анализ, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*