Изложение системы мира - Лаплас Пьер Симон (смотреть онлайн бесплатно книга .txt) 📗
Если видимая высота небесных светил под горизонтом превышает 11g [10°], рефракция зависит только от показаний барометра и термометра в месте наблюдения, и почти пропорциональна тангенсу видимого зенитного расстояния небесного светила, уменьшенного на произведение трёх с четвертью на рефракцию, соответствующую этому расстоянию при температуре тающего льда и при высоте барометра, равной 0.76 м. Из сказанного следует, что при этой температуре и высоте барометра, равной 0.76 м, коэффициент, умножение которого на этот тангенс даёт астрономическую рефракцию, равен 187.сс24 [60."60] и, что особенно замечательно, сравнение большого числа астрономических наблюдений приводит к такой же величине, которую поэтому можно считать очень точной. Но она изменяется с плотностью воздуха. Каждый градус температуры увеличивает объём воздуха на 0.00375, если принимать этот объём за единицу при температуре 0°. Следовательно, коэффициент 187.сс24 [60."60] надо разделить на единицу плюс произведение 0.00375 на число градусов температуры. Кроме того, при всех других равных условиях плотность воздуха пропорциональна высоте барометра. Поэтому этот коэффициент надо умножить на отношение этой высоты к 0.76 м, приведя столбик ртути к температуре 0°. С помощью этих данных можно составить точную таблицу рефракции, начиная от видимой высоты в 11g [10°] до зенита, т.е. в том интервале, в котором производятся почти все астрономические наблюдения. Эта таблица не будет зависима от любой гипотезы об уменьшении плотности атмосферных слоёв, и она может служить как на вершинах самых высоких гор, так и на уровне моря. Но поскольку сила тяжести изменяется с высотой и широтой места, ясно, что при одной и той же температуре одинаковые высоты барометра не указывают на одинаковую плотность воздуха, и она должна быть меньше там, где сила тяжести меньше. Поэтому коэффициент 187.сс24 [60."60], определённый на параллели 50g [45°], на поверхности Земли должен меняться как сила тяжести. Следовательно, из него надо вычитать произведение 0.сс53 [0."14] на косинус удвоенной широты.
В таблице, о которой шла речь, предполагается, что состав атмосферы везде и во всякое время одинаков. Это было установлено опытами. Теперь известно, что наш воздух не представляет собой однородную субстанцию, а на 100 частей он содержит 79 частей азота и 21 часть кислорода — газа в высшей степени необходимого для горения тел и для дыхания животных, которое само есть медленное горение, главный источник тепла живых организмов. В атмосферном воздухе на 1000 частей содержится также 3 или 4 части углекислого газа. Воздух, взятый в различные времена года, в самых отдалённых странах, на самых высоких горах и даже ещё больших высотах, был подвержен очень точному анализу, и в нем всегда находили в той же пропорции оба газа — азот и кислород. Лёгкая оболочка, заполненная водородом, самым разреженным из всех газов, вместе с привязанными к ней телами поднимается до тех пор, пока не встретит в атмосфере слой, достаточно разреженный, чтобы остаться там в равновесии. Таким способом, которым мы обязаны французским учёным, человек расширил свои владения и своё могущество. Он может устремиться в воздух, пройти облака и исследовать природу в высоких областях атмосферы, ранее нам не доступных. Самый полезный для науки подъем был осуществлён г-ном Гей-Люссаком, который поднялся на 7016 м над уровнем моря — самую большую высоту, которая до сих пор была достигнута. На этой высоте он измерил магнитную интенсивность и наклонение магнитной стрелки, которые он нашёл такими же, как на поверхности Земли. В момент его отправления из Парижа, около десяти часов утра, высота барометра была 0,7652 м, термометр отмечал 30.°7 и волосяной гигрометр 60%. Пять часов спустя, в самой высокой точке подъёма, те же приборы показывали: 0.3288 м, —9.°5 и 33%. Наполнив баллон воздухом из высоких слоёв, г-н Гей-Люссак с большой тщательностью сделал анализ его и не обнаружил разницы между этим воздухом и воздухом из самых низких слоёв атмосферы.
Прошло лишь около половины века, как астрономы ввели в таблицы рефракции высоту барометра и термометра. Стремление к исключительной точности, которую теперь стараются достичь в астрономических наблюдениях и инструментах, привело к желанию знать влияние влажности воздуха на его преломляющую силу и, если это необходимо, учитывать показания гигрометра. Чтобы дополнить непосредственные наблюдения, которых было мало в этой области, я исходил из гипотезы, что действие воды и её паров на свет пропорционально их плотности, — гипотезы тем более правдоподобной, что гораздо более глубокие изменения в состоянии тел, чем переход из жидкого состояния в парообразное, не изменяют сколько-нибудь заметно отношение между их влиянием на свет и их плотностью. Приняв эту гипотезу, о преломлении света водяным паром можно судить по измеренному с большой точностью преломлению, которое испытывает луч света, переходя из воздуха в воду. Так, находим, что преломляющая способность водяного пара превышает таковую способность воздуха, приведённого к той же плотности; но при одинаковом давлении плотность воздуха превышает плотность пара почти в таком же отношении. Отсюда следует, что преломление, возникающее в водяных парах, рассеянных в атмосфере, близко к преломлению в воздухе, место которого эти пары занимают, и поэтому влияние влажности воздуха на ею преломляющие свойства незаметно. Г-н Био подтвердил этот результат путём непосредственных опытов, показавших, кроме того, что температура влияет на рефракцию только через производимое ею изменение плотности воздуха. Наконец, г-н Араго, применив очень хитроумный и точный способ, убедился в том, что влияние влажности воздуха на рефракцию неощутимо.
Предыдущая теория предполагает, что атмосфера совершенно спокойна, так что плотность воздуха на равных высотах над уровнем моря повсюду одинакова. Но ветер и неравенство температур нарушают это предположение и могут заметным образом действовать на рефракцию. Каковы бы ни были усовершенствования астрономических инструментов, влияние этих возмущающих причин, если оно существенно, всегда будет препятствием для достижения высшей точности наблюдений, число которых придётся сильно увеличивать, чтобы это влияние преодолеть. К счастью, мы уверены, что это влияние не может превысить очень малое число секунд.6
Атмосфера ослабляет свет небесных тел, особенно на горизонте, где их лучи пересекают её на большой протяжённости. Из опытов Бугера следует, что если интенсивность света от небесного светила, находящегося в зените, при входе этого света в атмосферу и при показаниях барометра 0.76 м принять за единицу, то, дойдя до наблюдателя, она ослабляется до 0.8123. В этом случае, если бы атмосфера везде была одинаково плотной и имела температуру 0°, высота равнялась бы 7945 м. Естественно думать, что ослабление луча света, проходящего через атмосферу, будет таким же, как при этих гипотезах, так как он встречает на своём пути то же число молекул воздуха. Итак, слой воздуха толщиной 7945 м с указанной выше плотностью уменьшает силу света до 0.8123. Легко вывести ослабление света в слое воздуха такой же плотности и любой толщины, так как очевидно, что если интенсивность света уменьшается до одной четверти, пересекая данную толщу воздуха, то ещё один слой такой же толщины уменьшит эту четверть до одной шестнадцатой первоначальной величины. Отсюда видно, что, если толщина слоя увеличивается в арифметической прогрессии, интенсивность света уменьшается в геометрической. Следовательно, логарифмы интенсивности пропорциональны толщине слоёв. Итак, чтобы получить табличный логарифм интенсивности света, прошедшего слой воздуха некоторой толщины, надо умножить число —0.0902835 — табличный логарифм числа 0.8123 — на отношение этой толщины к 7945 м, а если плотность больше или меньше, чем предыдущая, надо увеличить или уменьшить этот логарифм в той же пропорции.
Чтобы определить ослабление света небесных тел в зависимости от их высоты над горизонтом, можно вообразить световой луч движущимся в канале, и воздух, заключённый в нем, привести к рассматривавшейся выше плотности. Длина столба этого воздуха определит ослабление света рассматриваемого небесного светила. В пределах зенитных расстояний от 12g [11°] до зенита можно допустить, что путь света от светила прямолинеен, и в этом интервале высот рассматривать слои атмосферы как плоские и параллельные. Тогда толщина каждого слоя в направлении светового луча относится к его толщине в вертикальном направлении как секанс видимого зенитного расстояния светила к радиусу. Поэтому, умножив этот секанс на —0.0902835 и на отношение высоты барометра к 0.76 м, затем разделив полученное произведение на единицу плюс число 0.00375, умноженное на число градусов термометра, мы получим логарифм интенсивности света рассматриваемого светила. Это очень простое правило даёт ослабление интенсивности света на вершине гор и на уровне морей, что может быть полезно как для исправления наблюдений спутников Юпитера, так и для оценки интенсивности солнечного света в фокусе зажигательных стёкол. Однако мы должны заметить, что пары, находящиеся в воздухе, значительно влияют на ослабление света. Ясное небо и разреженный воздух делают свет звёзд более ярким на вершинах высоких гор, и если бы наши большие телескопы были перенесены на вершину Кордильер, несомненно были бы открыты некоторые небесные явления, которые более плотная и менее прозрачная атмосфера в наших странах делает невидимыми.