Изложение системы мира - Лаплас Пьер Симон (смотреть онлайн бесплатно книга .txt) 📗
Так как сила определяется только через путь, который она заставляет тело пройти в определённое время, естественно взять этот путь для её измерения. Но это предполагает, что несколько сил, одновременно и в одном направлении действующих на тело, заставят его пройти за единицу времени расстояние, равное сумме расстояний, которые заставили бы пройти каждая из них по отдельности, или, иначе говоря, сила пропорциональна скорости. A priori мы этого знать не можем, так как природа движущей силы нам неизвестна. Поэтому в этом вопросе мы снова должны обратиться к опыту, так как всё, что не является необходимым следствием из того немногого, что мы знаем о природе вещей, есть для нас лишь результат наблюдения.
Сила может быть выражена бесконечным числом функций скорости, не вносящих противоречий. Так, например, можно предположить, что она пропорциональна квадрату скорости. При таком предположении легко определить движение точки, увлекаемой любым числом сил, скорости которых известны. Так, если отложить на направлениях этих сил от начальной точки отрезки, выражающие скорости, которые они сообщили бы по отдельности каждой материальной точке, и исходя из этой же точки отложить в тех же направлениях другие отрезки, относящиеся между собой как квадраты первых, то эти отрезки могли бы представить эти самые силы. Далее, складывая их, как было указано, получим как направление результирующей силы, так и выражающий её отрезок. Из сказанного видно, как можно определить движение точки, какова бы ни была функция скорости, выражающая силу. Среди всевозможных математических функций исследуем ту, которая присуща природе.
На Земле мы наблюдаем, что тело, побуждаемое какой-нибудь силой, движется одинаковым образом, каков бы ни был угол, составленный направлением этой силы с направлением движения, общим для этого тела и для той части земной поверхности, где оно находится. Небольшое отклонение от этого правила очень заметно изменило бы продолжительность колебания маятника в зависимости от положения плоскости его колебаний. А опыт показывает, что во всех вертикальных плоскостях эта продолжительность в точности одинакова. На корабле, движение которого равномерно, подвижное тело под воздействием пружины, силы тяжести или любой другой силы движется относительно частей корабля одинаково, каковы бы ни были скорость корабля и направление его движения. Следовательно, можно установить как общий закон земных движений, что, если в системе тел, увлекаемых общим движением, к одному из них приложить некоторую силу, его относительное или видимое движение будет одним и тем же, каковы бы ни были общее движение системы и угол, составленный его направлением с направлением приложенной силы.
Из этого закона, предполагаемого строгим, вытекает, что сила пропорциональна скорости. Так, если представить себе два тела, с одинаковой скоростью движущихся по одной прямой, и к одному из них приложить силу, прибавляющуюся к первой, его скорость относительно другого тела будет такой же, как если бы первоначально оба тела были неподвижны. Ясно, что путь, пройденный телом под воздействием начальной силы и той, что к ней прибавлена, равен сумме путей, которые каждая из сил заставила бы тело пройти за это же время. А это предполагает, что сила пропорциональна скорости.
И наоборот: если сила пропорциональна скорости, относительные движения тел, движущихся под воздействием любых сил, останутся прежними, каково бы ни было их общее движение, потому что это движение, разложенное на три составляющие, параллельные трём неподвижным осям, заставляет увеличиваться на одну и ту же величину парциальные скорости каждого тела параллельно этим осям. А так как относительная скорость зависит только от разности парциальных скоростей, она будет той же, каково бы ни было общее движение всех тел. Поэтому, участвуя в движении системы тел, по наблюдаемым в ней явлениям невозможно судить о её абсолютном движении. Вот что характеризует этот закон, неведение которого задержало познание истинной системы мира из-за того, что трудно было разобраться в относительных движениях тел, перемещающихся над Землёй, увлекаемой двойным движением: вращением вокруг самой себя и обращением вокруг Солнца.
Ввиду исключительной малости самых значительных движений, которые мы можем сообщить телам, по сравнению с движением, увлекающим их вместе с Землёй, для того чтобы видимые движения системы тел были независимы от направления этого движения, достаточно, чтобы небольшое увеличение силы, приводящей в движение Землю, относилось к соответствующему увеличению скорости, как сами эти величины. Так, наш опыт только доказывает реальность этой пропорции, которая, если она имеет место независимо от скорости Земли, дала бы закон пропорциональности скорости и силы. Более того, она дала бы этот закон, если бы функция скорости, выражающая силу, состояла бы лишь из одного члена. Если бы скорость не была пропорциональна силе, пришлось бы предположить, что в природе функция скорости, выражающая силу, образована из нескольких членов, что мало вероятно. Кроме того, надо было бы предположить, что скорость Земли в точности такова, чтобы удовлетворить упомянутому выше отношению, что мало правдоподобно. К тому же скорость Земли изменяется в разные времена года: она приблизительно на 1/30 больше зимой, чем летом. Это изменение делается ещё значительнее, если, как всё на это указывает, солнечная система движется в пространстве. Поэтому в зависимости от того, совпадает ли это поступательное движение с движением Земли или обратно ему, в абсолютном движении Земли должны получаться большие годичные неравномерности. А это должно было бы изменить пропорцию, о которой идёт речь, и отношение приложенной силы к относительной скорости, которую она сообщает, если бы эти пропорция и отношение не были независимы от абсолютной скорости.
Все небесные явления подтверждают эти доводы. Скорость света, определённая по затмениям спутников Юпитера, складывается со скоростью Земли в точности по такому же закону, как закон пропорциональности силы и скорости, и все движения солнечной системы, вычисленные по этому закону, в точности совпадают с наблюдениями.
Итак, вот два закона движения, а именно, закон инерции и закон пропорциональности силы и скорости, которые получены благодаря наблюдениям. Они наиболее естественные и самые простые из всех, какие можно вообразить, и, несомненно, вытекают из самой природы материи. Но так как эта природа нам неизвестна, для нас эти законы — лишь только наблюдённые факты, впрочем, единственные, которые механика заимствует из опыта.
Поскольку скорость пропорциональна силе, эти две величины могут быть выражены одна через другую. Поэтому на основании предыдущего можно получить скорость точки, увлекаемой любым числом сил, у которых известны направления и скорости.
Если точка подвергается действию постоянных сил, в своём непрерывно меняющемся движении она опишет кривую, вид которой зависит от действующих на неё сил. Чтобы его определить, надо рассмотреть элементы этой кривой, выяснить, как они рождаются одни из других и, исходя из закона изменения координат, установить их окончательные выражения. Это является задачей исчисления бесконечно малых, счастливое открытие которого доставило механике так много возможностей. Понятно, насколько полезно совершенствовать этот мощный инструмент человеческого разума.
Сила тяжести являет нам повседневный пример силы, действующей, по-видимому, беспрерывно. Правда, мы не знаем, не разделено ли её действие неощутимо малыми промежутками времени, но поскольку при этой гипотезе явления были бы почти такими же, как и в случае совершенно непрерывного действия, геометры предпочли последнюю гипотезу как более удобную и простую. Изложим законы этих явлений.
Сила тяжести представляется действующей одинаково как на неподвижные, так и на движущиеся тела. В первое мгновение тело, предоставленное её действию, приобретает бесконечно малую ступень скорости, во второе мгновение к ней прибавляется ещё одна ступень скорости и так далее. Таким образом, скорость возрастает вместе со временем.