Online-knigi.org
online-knigi.org » Книги » Научно-образовательная » Биология » Обмен веществ и энергии в клетках организма - Петросова Рената Арменаковна (серии книг читать бесплатно txt) 📗

Обмен веществ и энергии в клетках организма - Петросова Рената Арменаковна (серии книг читать бесплатно txt) 📗

Тут можно читать бесплатно Обмен веществ и энергии в клетках организма - Петросова Рената Арменаковна (серии книг читать бесплатно txt) 📗. Жанр: Биология. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

6. Опишите последовательность превращения пировиноградной кислоты в процессе биологического окисления. В результате каких реакций образуется углекислый газ? В каких органеллах клетки идут эти процессы?

7. Где и как используется кислород, поступающий в организм при дыхании? Где происходит образование молекул воды?

8. Как идет преобразование энергии, выделяющейся в процессе реакций кислородного этапа? Сравните количество образующихся молекул АТФ в результате циклических реакций и на дыхательной цепи. Объясните этот факт.

9. Как используется энергия электронов в процессе окислительного фосфорилирования? Почему этот процесс называется окислительным фосфорилированием? Назовите структуры митохондрий, в которых идут циклические реакции и окислительное фосфорилирование. Какие из этих реакций будут идти с большей скоростью? Ответ поясните.

10. АТФ синтезируется в митохондриях и хлоропластах. Объясните, в чем сходство и различие процессов, приводящих к синтезу этих молекул в органеллах.

6. Генетический код остановилась

Гены и ДНК

Способность клеток поддерживать высокую степень упорядоченности своей организации связана с генетической информацией.

Гены — наследственные факторы, представляющие собой определенный набор последовательности нуклеотидов в молекуле ДНК, в которых хранится информация о строении и свойствах каждой клетки и организма в целом. Носителями наследственной информации являются хромосомы, состоящие из молекул ДНК.

Долгое время ученые считали, что передача генетической информации осуществляется белками, так как это единственные вещества, обладающие структурным разнообразием. Многочисленные исследования бактерий и вирусов показывали несостоятельность этой теории.

Открытая Джеймсом Уотсоном и Френсисом Криком двойная спираль молекулы ДНК привлекла к себе пристальное внимание ученых. Были высказаны предположения, что две цепи ДНК способны раскручиваться и служить матрицей для синтеза новых молекул. Модель Уотсона и Крика помогла сформулировать общие принципы процесса передачи генетической информации от клетки к клетке, от организма к организму.

Генетический код

Специфичность каждой клетки определяется набором белков. Они составляют половину всей массы клетки, выполняют разнообразные и многочисленные функции, обеспечивают рост, развитие, дифференциацию клеток, поддержание их структуры и функций.

Вся многочисленная наследственная информация записана на ДНК в виде линейной последовательности четырех типов нуклеотидов — аденина (А), тимина (Т), гуанина (Г), цитозина (Ц). Генетическая информация записана четырехбуквенным алфавитом. Последовательность нуклеотидов на ДНК определяет соответствующее информационное содержание. Число различных последовательностей в молекуле ДНК составляет 4n, где п — это число нуклеотидов в одной цепи молекулы ДНК. Величина п очень велика. Так, например, ДНК в клетке животного обычно содержит 3 · 109 нуклеотидов. Как же клетка осуществляет перевод последовательности нуклеотидов ДНК в последовательность аминокислот белка?

Правила перевода последовательности нуклеотидов в нуклеиновой кислоте в аминокислотную последовательность белка называются генетическим кодом. Он был расшифрован в 60-х гг. XX в.

В результате ряда экспериментов и математических расчетов было определено, что одна аминокислота кодируется тремя нуклеотидами. Всего в молекуле ДНК встречаются 4 типа нуклеотидов. Если бы аминокислоте соответствовал один нуклеотид, то закодировать можно было бы только 4 аминокислоты. Но этого мало, так как в клетке имеется 20 аминокислот. Если предположить, что одна аминокислота кодируется сочетанием из двух нуклеотидов, то 42 = 16, т. е. можно закодировать 16 аминокислот. Тогда 4 аминокислоты не имеют шансов попасть в белок. Следовательно, одну аминокислоту кодируют три нуклеотида: 43 = 64.

64 кодов с избытком хватает для 20 аминокислот. В этом случае каждая аминокислота кодируется не одним, а, возможно, несколькими кодами. Экспериментальная проверка подтвердила высказанные предположения. В результате многочисленных исследований были установлены следующие свойства генетического кода.

1. Код триплетен — каждой аминокислоте соответствует сочетание из трех нуклеотидов. Всего таких сочетаний — кодонов 64. Из них 61 кодон смысловой, т. е. соответствует 20 аминокислотам, а 3 кодона — бессмысленные стоп-коды, которые не соответствуют аминокислотам, а заполняют промежутки между генами.

2. Код однозначен — каждый триплет соответствует только одной аминокислоте.

3. Код вырожден — каждая аминокислота имеет более чем один кодон. Например, аминокислота глицин имеет 4 кодона: ЦЦА, ЦЦГ, ЦЦТ, ЦЦЦ. Чаще аминокислоты имеют 2 кодона.

4. Код универсален — все живые организмы имеют один и тот же генетический код аминокислот.

5. Код непрерывен — между кодами нет промежутков.

6. Код неперекрываем — конечный нуклеотид одного кодона не может служить началом другого.

Таблица генетического кода

Обмен веществ и энергии в клетках организма - i_065.jpg

Вопросы и задания для самоконтроля

1. Объясните последовательность передачи генетической информации: ген — белок — признак.

2. Вспомните, какая структура белка определяет его строение и свойства. Как закодирована эта структура в молекуле ДНК?

3. Что представляет собой генетический код?

4. Охарактеризуйте свойства генетического кода.

7. Реакции матричного синтеза. Транскрипция

Информация о белке записана в виде нуклеотидной последовательности в ДНК и находится в ядре. Собственно синтез белка происходит в цитоплазме на рибосомах. Следовательно, для синтеза белка необходима структура, которая переносила бы информацию от ДНК к месту синтеза белка. Таким посредником является информационная, или матричная, РНК, которая передает информацию с определенного гена молекулы ДНК к месту синтеза белка на рибосомы.

Кроме переносчика информации необходимы вещества, которые обеспечивали бы доставку аминокислот к месту синтеза и определение их места в полипептидной цепи. Такими веществами являются транспортные РНК, которые обеспечивают кодирование и доставку аминокислот к месту синтеза. Синтез белка протекает на рибосомах, тело которых построено из рибосомальных РНК. Значит, необходим еще один вид РНК — рибосомальные.

Генетическая информация реализуется в трех типах реакций: синтезе РНК, синтезе белка, репликации ДНК. В каждом из них информация, заключенная в линейной последовательности нуклеотидов, используется для создания другой линейной последовательности: либо нуклеотидов (в молекулах РНК или ДНК), либо аминокислот (в молекулах белка). Экспериментально было доказано, что именно ДНК служит матрицей для синтеза всех нуклеиновых кислот. Эти реакции биосинтеза носят название матричного синтеза. Достаточная простота матричных реакций и их одномерность позволили подробно изучить и понять их механизм, в отличие от других процессов, протекающих в клетке.

Транскрипция

Процесс биосинтеза РНК на ДНК называется транскрипцией. Этот процесс протекает в ядре. На матрице ДНК синтезируются все виды РНК — информационная, транспортная и рибосомальная, которые впоследствии участвуют в синтезе белка. Генетический код на ДНК в процессе транскрипции переписывается на информационную РНК. В основе реакции лежит принцип комплементарности.

Синтез РНК имеет ряд особенностей. Молекула РНК значительно короче и является копией только небольшого участка ДНК. Поэтому матрицей служит только определенный участок ДНК, где находится информация о данной нуклеиновой кислоте. Вновь синтезированная РНК никогда не остается связанной с исходной ДНК-матрицей, а освобождается после окончания реакции. Процесс транскрипции протекает в три этапа.

Перейти на страницу:

Петросова Рената Арменаковна читать все книги автора по порядку

Петросова Рената Арменаковна - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


Обмен веществ и энергии в клетках организма отзывы

Отзывы читателей о книге Обмен веществ и энергии в клетках организма, автор: Петросова Рената Арменаковна. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*