Обмен веществ и энергии в клетках организма - Петросова Рената Арменаковна (серии книг читать бесплатно txt) 📗
Первый этап — инициация — начало процесса. Синтез РНК-копий начинается с определенной зоны на ДНК, которая называется промотором. Эта зона содержит определенный набор нуклеотидов, которые являются старт-сигналами. Процесс катализируется ферментами РНК-полимеразами. Фермент РНК-полимераза соединяется с промотором, раскручивает двойную спираль и разрушает водородные связи между двумя цепями ДНК. Но только одна из них служит матрицей для синтеза РНК.
Второй этап — элонгация. В эту стадию происходит основной процесс. На одной цепи ДНК, как на матрице, по принципу комплементарности выстраиваются нуклеотиды (рис. 19). Фермент РНК-полимераза, шаг за шагом продвигаясь по цепи ДНК, соединяет нуклеотиды между собой, одновременно постоянно раскручивая дальше двойную спираль ДНК. В результате такого движения синтезируется РНК-копия.
Третий этап — терминация. Это завершающая стадия. Синтез РНК продолжается до стоп-сигнала — определенной последовательности нуклеотидов, которая прекращает движение фермента и синтез РНК. Полимераза отделяется от ДНК и синтезированной РНК-копии. Одновременно с матрицы снимается и молекула РНК. ДНК восстанавливает двойную спираль. Синтез завершен. В зависимости от участка ДНК таким способом синтезируются рибосомальные, транспортные, информационные РНК.
Матрицей для транскрипции молекулы РНК служит только одна из цепей ДНК. Однако матрицей двух соседних генов могут служить разные цепи ДНК. Какая из двух цепей будет использоваться для синтеза, определяется промотором, который направляет фермент РНК-полимеразу в том или ином направлении.
После транскрипции молекула информационной РНК эукариотических клеток подвергается перестройке. В ней вырезаются нуклеотидные последовательности, которые не несут информацию о данном белке. Этот процесс называется сплайсингом. В зависимости от типа клетки и стадии развития могут быть убраны разные участки молекулы РНК. Следовательно, на одном участке ДНК синтезируются разные РНК, которые несут информацию о различных белках. Это обеспечивает передачу значительной генетической информации с одного гена, а также облегчает генетическую рекомбинацию.
Рис. 19. Синтез информационной РНК. 1 — цепь ДНК; 2 — синтезируемая РНК
Вопросы и задания для самоконтроля
1. Какие реакции относятся к реакциям матричного синтеза?
2. Что является исходной матрицей для всех реакций матричного синтеза?
3. Как называется процесс биосинтеза иРНК?
4. Какие виды РНК синтезируются на ДНК?
5. Установите последовательность фрагмента иРНК, если соответствующий фрагмент на ДНК имеет последовательность: ААГЦТЦТГАТТЦТГАТЦГГАЦЦТААТГА.
8. Биосинтез белка
Белки являются необходимыми компонентами всех клеток, поэтому наиболее важным процессом пластического обмена является биосинтез белка. Он протекает во всех клетках организмов. Это единственные компоненты клетки (кроме нуклеиновых кислот), синтез которых осуществляется под прямым контролем генетического материала клетки. Весь генетический аппарат клетки — ДНК и разные виды РНК — настроен на синтез белков.
Ген — это участок молекулы ДНК, ответственный за синтез одной молекулы белка. Для синтеза белка необходимо, чтобы определенный ген с ДНК был скопирован в виде молекулы информационной РНК. Этот процесс был рассмотрен ранее. Синтез белка представляет собой сложный многоэтапный процесс и зависит от деятельности различных видов РНК. Для непосредственного биосинтеза белка необходимы следующие компоненты:
1. Информационная РНК — переносчик информации от ДНК к месту синтеза. Молекулы иРНК синтезируются в процессе транскрипции.
2. Рибосомы — органоиды, где происходит синтез белка.
3. Набор необходимых аминокислот в цитоплазме.
4. Транспортные РНК, кодирующие аминокислоты и переносящие их к месту синтеза на рибосомы.
5. АТФ — вещество, обеспечивающее энергией процессы кодирования аминокислот и синтеза полипептидной цепи.
Строение транспортной РНК и кодирование аминокислот
Транспортные РНК (тРНК) представляют собой небольшие молекулы с количеством нуклеотидов от 70 до 90. На долю тРНК приходится примерно 15 % всех РНК клетки. Функция тРНК зависит от ее строения. Изучение структуры молекул тРНК показало, что они свернуты определенным образом и имеют вид клеверного листа (рис. 20). В молекуле выделяются петли и двойные участки, соединенные за счет взаимодействия комплементарных оснований. Наиболее важной является центральная петля, в которой находится антикодон — нуклеотидный триплет, соответствующий коду определенной аминокислоты. Своим антикодоном тРНК способна соединяться с соответствующим кодоном на иРНК по принципу комплементарности.
Рис. 20. Строение молекулы тРНК: 1 — антикодон; 2 — место присоединения аминокислоты
Каждая тРНК может переносить только одну из 20 аминокислот. Значит, для каждой аминокислоты имеется по меньшей мере одна тРНК. Так как аминокислота может иметь несколько триплетов, то и количество видов тРНК равно числу триплетов аминокислоты. Таким образом, общее число видов тРНК соответствует числу кодонов и равно 61. Трем стоп-кодам не соответствует ни одна тРНК.
На одном конце молекулы тРНК всегда находится нуклеотид гуанин (5'-конец), а на другом (3'-конце) всегда три нуклеотида ЦЦА. Именно к этому концу идет присоединение аминокислоты (рис. 21). Каждая аминокислота присоединяется к своей специфической тРНК с соответствующим антикодоном. Механизм этого присоединения связан с работой специфических ферментов — аминоацил-тРНК-синтетазами, которые присоединяют каждую аминокислоту к соответствующей тРНК. Для каждой аминокислоты имеется своя синтетаза. Соединение аминокислоты с тРНК осуществляется за счет энергии АТФ, при этом макроэргическая связь переходит в связь между тРНК и аминокислотой. Так происходит активирование и кодирование аминокислот.
Этапы биосинтеза белка. Процесс синтеза полипептидной цепи, осуществляемый на рибосоме, называется трансляцией. Информационная РНК (иРНК) является посредником в передаче информации о первичной структуре белка, тРНК переносит закодированные аминокислоты к месту синтеза и обеспечивает последовательность их соединений. В рибосомах осуществляется сборка полипептидной цепи.
Рис. 21. Активирование и кодирование аминокислоты: 1 — тРНК; 2 — аминокислота
В рибосоме имеются три центра, с которыми связываются молекулы РНК: один центр для иPHК и два — для тРНК. Одна тРНК с аминокислотой удерживается в аминоацильном центре, а другая — в пептидном центре, где идет рост полипептидной цепи.
Первый этап — инициация. Синтезированная в процессе транскрипции иPHК выходит из ядра и направляется в цитоплазму к месту синтеза белка — рибосоме. За счет различных белковых факторов и энергии АТФ происходит соединение иPHК и двух субъединиц рибосом, которые до этого момента находились в диссоциированном состоянии. Прежде чем рибосома начнет синтез полипептидной цепи, к иРНК должна присоединиться особая молекула — инициаторная тРНК с аминокислотой. С нее всегда начинается синтез белка. По принципу комплементарности тРНК своим антикодоном соединяется с кодоном на иРНК и входит в рибосому. Этот кодон на иPHК называется старт-кодоном.
В результате взаимодействия всех компонентов образуется комплекс: рибосома — иРНК — тРНК-инициатор — аминокислота.
Вторая стадия — элонгация. Это стадия роста полипептидной цепи. Далее начинается сборка полипептидной цепи. Следующая тРНК с аминокислотой по принципу комплементарности антикодона с кодоном соединяется с иPHК и входит в рибосому. Первая тРНК закрепляется в пептидном центре, а вторая тРНК — с аминокислотой в аминоацильном центре. Аминокислоты сближаются друг с другом, между ними возникает пептидная связь, и образуется дипептид. При этом первая тРНК освобождается и, покидая рибосому, тянет за собой иPHК, которая продвигается на один триплет.