Логика и аргументация: Учебное пособие для вузов. - Рузавин Георгий Иванович (читать книги полностью .TXT) 📗
Возникает вопрос: как связан закон достаточного основания с остальными законами логики? Некоторые авторы считают, что поскольку этот закон не имеет четкой логической структуры и не выражается с помощью формулы математической логики, следовательно, он не играет никакой роли в логике и поэтому должен быть исключен из нее. Сторонники противоположной позиции, напротив, считают, что этот закон необходим для обоснованности рассуждений и исключения произвола в них. Некоторые даже заявляют, что он может быть выражен в виде определенной формулы.
Рассмотренные выше законы противоречия и исключенного третьего являются, по сути дела, законами запрета, поскольку они запрещают логические противоречия в рассуждении и ограничивают выбор между двумя альтернативами: утверждением и отрицанием. Так, например, если из Х следует Y и Х истинно, то и заключение Y должно быть истинным. Другими словами, здесь мы имеем дело с логическим отношением между основанием и следствием. Если же истинность основания нам неизвестна, то необходимость следствия не гарантируется правилами логики. Действительно, мы уже знаем, что если импликация Х ^ Y истинна, то ее консеквент Y не следует из антецедента, т.е. истинный Y может быть получен как из истинного, так и из ложного антецедента. Поэтому рассуждение по схеме:
Х → Y
Y__________
Вероятно, что Y
не является правилом логики, а относится к вероятностным (или правдоподобным) умозаключениям. Именно такой характер носит отношение между гипотезой Я и подтверждающими ее следствиями Е. Чем больше и разнообразнее будут такие следствия гипотезы, тем с большей вероятностью она подтверждается ими.
Отсюда становится ясным, что закон достаточного основания гарантирует не столько правильность мышления, сколько ее обоснованность. Рассуждение может быть правильным по форме, но не обоснованным посредством своих посылок. Как известно, из ложных посылок случайно можно получить и истинное заключение, но чтобы гарантировать его достоверную истинность, необходимо обосновать истинность посылок, потому что если посылки будут истинными, а рассуждение правильным, тогда и заключение будет достоверно истинным.
Но так обстоит дело только с доказательными рассуждениями. В правдоподобных рассуждениях дедуктивные правила вывода не могут использоваться по самому характеру подобных умозаключений, но тем не менее, данные (или посылки), на которые они опираются, всегда тщательно обосновываются путем подтверждения их эмпирическими результатами наблюдений, экспериментов, свидетельств очевидцев, ранее установленных истин и т.д.
Поэтому в рамках логики необходимо различать правильность и обоснованность мышления. Рассуждение может быть правильным по форме, но необоснованным по содержанию, и следовательно, не гарантирующим достоверной истинности заключения. Понятие обоснованности мышления является, таким образом, более широким по своему объему, ибо оно охватывает не только доказательные рассуждения, но и правдоподобные (или вероятностные) умозаключения.
Поскольку аргументация представляет собой рационально-логический процесс убеждения, в котором значительную роль играет обоснование выдвигаемых мнений, утверждений, гипотез и точек зрения с относящимися к ним доводами или аргументами, то закон достаточного основания оказывается нормой (или принципом) аргументации. Этот принцип требует: чтобы характеризовать суждение как истинное или ложное, вероятное или невероятное, необходимо привести аргументы (доводы), подтверждающие или обосновывающие суждения. Очевидно, что такие аргументы должны быть приведены в процессе рассуждения, ибо отдельное суждение, взятое само по себе, без отношения к другим суждениям не может рассматриваться ни как правильное, ни как обоснованное. Доказательность и обоснованность служат важными критериями рационального мышления, обеспечивающего получение достоверного или правдоподобного знания.
Аргументация потому и рассматривается как рационально-логическая основа процесса убеждения и коммуникации, что она опирается:
1) на правильность рассуждения, обеспечиваемую нормами законов тождества, противоречия и исключенного третьего;
2) на закон достаточного основания, нормы которого требуют проверки, подтверждения и обоснования посылок рассуждения его аргументами.
Отсюда становится ясным, что рациональное и критическое мышление должно основываться, во-первых, на доказательных рассуждениях, в которых заключения получаются из посылок по правилам логической дедукции, во-вторых, на правдоподобных рассуждениях, где посылки лишь с определенной степенью вероятности подтверждают заключение и где доводом для принятия заключения является надежность аргументов.
Следовательно, критический анализ рассуждения сводится прежде всего к оценке тех доводов, которые служат их посылками. Для доказательных рассуждений существенное значение имеют правила вывода, опирающиеся на логические законы. В правдоподобных рассуждениях таких правил не существует, поэтому их заменяют эвристическими рекомендациями и приемами, которые не гарантируют достижение истины, но облегчают ее поиски и тем самым помогают избежать обращения к так называемому методу проб и ошибок.
Принцип достаточного основания в традиционной логике был сформулирован для доказательных рассуждений. Он требует, чтобы заключение в них было достоверно истинным, а для этого необходимо прежде всего соблюдение законов тождества, противоречия и исключенного третьего. Именно они обеспечивают правильность мышления. Но этого требования недостаточно, чтобы заключение было достоверно истинным. Требование закона достаточного основания как раз и сводится к тому, чтобы обеспечить надежность и истинность посылок.
Что касается правдоподобных рассуждений, заключение которых только вероятно в той или иной степени, то по отношению к ним в классической интерпретации вероятности был сформулирован так называемый принцип недостаточного основания. Смысл его сводится к следующему: если у нас нет оснований предпочесть исход одного события другому или одну гипотезу другой, тогда оба события или гипотезы следует считать равновероятными. Как уже говорилось в гл. 5, равновероятность событий основывается на их равновозможности. Например, выпадение "орла" или "решки" при бросании стандартной монеты будет равновозможно, поскольку при этом нет оснований ожидать, что она будет падать чаще на одну из ее сторон. В данном случае такое рассуждение вполне правомерно потому, что оно опирается на физическую симметрию предмета. То же самое следует сказать о результатах бросания игральной кости, вращения колеса рулетки и других предметов, используемых в азартных играх. Все они сделаны так, чтобы гарантировать равновозможность различных исходов событий. Опираясь на этот факт, основоположники классической теории вероятностей Я. Бернулли и П.С. Лаплас выдвинули принцип недостаточного основания, распространив частный случай на другие случаи и возвели его в ранг общей закономерности. В своей основополагающей работе "Искусство догадок" Я. Бернулли одним из первых стал применять его по отношению к предположениям и догадкам.
Нетрудно, однако, показать, что этот принцип неприменим в тех случаях, когда не существует симметричных результатов при появлении событий, проверке гипотез и предположений. В самом деле, если мы допустим что на Марсе существуют живые организмы, то у нас нет достаточных оснований, чтобы предпочесть эту гипотезу противоположной, т.е. что живых организмов на этой планете нет. Следовательно, вероятность каждой из гипотез будет равна 1/2. Выдвинем еще более сильную гипотезу: предположим, что на Марсе есть животные, но у нас нет достаточных оснований верить в нее больше, чем в противоположную, т.е., что там нет животных. Опять каждая из этих гипотез будет равна 1/2. Наконец, допустим, что там есть разумные существа, которые строят каналы, как предполагали раньше. Но с равным успехом можно верить и в противоположную гипотезу, и эта вера теперь больше подтверждается космическими исследованиями. Выходит, что вероятности таких гипотез будут снова равны 1/2, а суммарная вероятность противоположных гипотез будет равна l1/2, что противоречит аксиоме исчисления вероятностей, согласно которой вероятность не может быть больше 1.