Популярная библиотека химических элементов. Книга первая. Водород — палладий - Коллектив авторов (электронные книги без регистрации TXT) 📗
Еще раз напомним, что описанная схема — одна из многих; чаще всего окись иттрия получают из бастнезита совсем другим путем.
Окись иттрия находит самостоятельное применение. Известно, что она, как и окись скандия, входит в состав ферритов — элементов памяти электронно-вычислительных машин.
От окисла к металлу
После того как иттрий отделен от основной массы редкоземельных элементов, его нужно восстановить. Для этого окись превращают в один из галогенидов иттрия, например, во фторид:
Это соединение смешивают с дважды перегнанным металлическим кальцием, помещают все в танталовый тигель и закрывают перфорированной крышкой. Тигель отправляют в кварцевую индукционную печь. Печь закрывают, откачивают из нее воздух и начинают медленно нагревать. Когда температура достигнет 600°C, в печь пускают аргон, а прекращают его подачу, когда давление в печи достигнет 500 мм ртутного столба. Затем температуру повышают до 1000°C, и восстановление начинается. Реакция 2YF3 + 3Ca → 2Y + 3CaF2 — экзотермическая, и температура в печи продолжает расти. Тогда еще «поддают жару», доводят температуру до 1600°C (в этих условиях лучше разделяются металл и шлак), после чего дают печи остыть.
Шлак легко откалывается, и остается слиток иттрия чистотой до 99%. Примесь кальция без труда удаляется вакуумной переплавкой; труднее избавиться от тантала (0,5–2%) и кислорода (0,05–0,2%). Но и это можно сделать и получить слитки, пригодные для промышленного использования и для уточнения физико-химических характеристик элемента № 39/
Рассказывая о свойствах иттрия, обороты «только один» или «только одна» можно применить лишь дважды.
Во-первых, для этого элемента неприменимо такое общее, казалось бы, понятие, как «природная смесь изотопов». Нет у него природной смеси: весь естественный иттрий — это только один стабильный изотоп иттрий-89.
И только одну валентность (3+) проявляет иттрий во всех известных соединениях. Но, возможно, это утверждение не есть «истина в последней инстанции». Сложности получения элементного иттрия и высокая цена (килограмм иттрия еще недавно стоил 440 долларов) в течение многих лет сдерживали исследования элемента № 39 и его соединений. Поэтому не исключено, что когда-нибудь будут получены соединения иттрия с «нестандартной» валентностью, как это случилось, например, с алюминием. Ведь во времена, когда алюминиевая посуда была привилегией королей, ни один химик не подозревал о существовании соединений одновалентного алюминия.
Не только перспективы
Иттрий долго ходил в «перспективных». Еще в книгах, изданных в начале 60-х годов нашего века, этот металл считали перспективным и не больше. Так, во втором издании известного английского справочника «Rare Metalls Handbook», вышедшем в Лондоне в 1961 г., последняя часть раздела «Иттрий» посвящена не применению этого элемента, а лишь перспективам его применения. В «Курсе общей химии» Б. В. Некрасова (издание 1962 г.) говорится: «Практического применения отдельные элементы подгруппы скандия (а значит, и иттрий. — Ред.) и их производные еще не находят…» И это отражало истинное положение вещей.
Можно было считать иттрий перспективным. Залогом тому — его свойства: высокие температуры плавления и кипения — соответственно 1520 и 3030°C; упругость примерно такая же, как у алюминия и магния; прочность, сравнимая с прочностью титана. И плюс к этому относительная легкость (плотность иттрия 4,47 г/см3) и малое эффективное сечение захвата тепловых нейтронов, т. е. способность почти не тормозить цепную реакцию, если иттрий применен в конструкции атомного реактора.
Но по каждой отдельно взятой характеристике иттрий уступал тому или иному металлу. Авиаконструкторы и проектировщики новых реакторов могут пока обойтись без него. Они, видимо, охотно применили бы иттрий, будь он более доступен, но каждый раз закладывали в свои проекты другие материалы — или с лучшими «природными данными», или менее дефицитные.
Лишь в последние годы положение стало меняться. Все чаще в печати появляются сообщения о том, что иттрий и его сплавы применили в том или ином детище новейшей техники. В частности, из иттрия стали делать трубопроводы, по которым транспортируют жидкое ядерное горючее — расплавленный уран или плутоний. Иттрий высокой чистоты легко вытягивается в трубы, хорошо сваривается в атмосфере инертного газа и, что очень важно, отлично шлифуется. С ураном и плутонием он практически не реагирует, что, естественно, делает иттриевые трубы более долговечными. Из сплавов иттрия с бериллием стали делать отражатели и замедлители нейтронов, работающие в атомных реакторах при температуре более 1100ºC.
Элемент № 39 содержится во множестве минералов. Еще один богатый им минерал найден в 1961 г. в Казахстане и назван гагаринитом — в честь Юрия Гагарина. Но снимке: кристаллы гагаринита в кварце (в натуральную величину). Фото минералога А. В. Степанова, одного из первооткрывателей гагаринита
Появились сообщения о применении иттрия в авиастроении. Это тоже понятно: известно, что иттрий-алюминиевые сплавы по прочности почти не уступают стали, что добавка элемента № 39 значительно повышает прочность легких авиационных сплавов на основе магния, особенно при повышенных температурах.
Наконец, иттрий начали применять и как «витамин витаминов». «Витаминами стали» называют хром, ванадий, молибден и другие легирующие металлы. Небольшие добавки иттрия улучшают многие свойства этих «витаминов». Всего 0,1–0,2% элемента № 39, добавленные в хром, цирконий, титан, молибден, делают структуру этих металлов более мелкозернистой. Облагороженный иттрием ванадий становится и более пластичным — иттрий действует как раскислитель, связывает кислород и азот, в результате чего промышленный ванадий утрачивает присущую ему хрупкость.
Начинается проникновение иттрия и в черную металлургию — работа его в качестве легирующего металла. Так, нержавеющая сталь, содержащая 25% хрома, устойчива против окисления при температурах до 1093°C. Добавка 1% иттрия повышает этот предел до 1371°C.
Все эти примеры показывают, что сегодня считать иттрий только «перспективным» неправильно, его служба людям уже началась. И мы не ошибемся, утверждая, что в статье об иттрии, которую напишут лет через десять, число подобных примеров станет несравненно больше.
Фридрих Энгельс писал, что когда у общества появляется техническая потребность, то она продвигает науку быстрее, чем десяток университетов. Техническая потребность в иттрии уже появилась.
ПОПУТНО ИЗВЛЕЧЕННЫЙ. Собственно иттриевые минералы (20–30% Y2O3) — ксенотим YPO4, фергюсонит YNbO4, эвксенит YNbTiO6, таленит Y2Si2O7 и другие — слишком редки, чтобы считаться реальным источником элемента № 39 в будущем. Будущее иттрия во многом зависит от того, насколько успешно будет решена проблема комплексного использования горно-химического сырья. Многие тысячи тонн иттрия и других редкоземельных металлов можно будет получать, в частности, из фосфоритов Прибалтики и хибинского апатита. А поскольку иттрий предполагается извлекать попутно (из некоторых минералов его уже получают в процессе комплексной переработки), он будет становиться все доступнее и дешевле. Уже сейчас за рубежом расходуют более 100 т иттрия в год, и почти весь этот иттрий попутно извлеченный.
МИНЕРАЛ ГАГАРИНИТ. Сравнительно недавно, в 1961 г., советские минералоги А. В. Степанов и Э. А. Северов обнаружили в Казахстане скопления неизвестного ранее иттрийсодержащего минерала. Он был назван гагаринитом в честь первого космонавта. Анализ, выполненный А. В. Быковой, показал, что минерал представляет собой щелочной фторид кальция и иттрия. Всестороннее кристаллохимическое исследование гагаринита, предпринятое А. А. Воронковым, Ю. А. Пятенко и Н. Г. Шумяцкой, привело к полной расшифровке структуры минерала: его формула NaYCaF6. Один из первых образцов гагаринита — крупные светло-желтые шестигранные кристаллы — первооткрыватели подарили Юрию Алексеевичу Гагарину. Сейчас друзу гагаринита можно увидеть в Минералогическом музее АН СССР им. А. Е. Ферсмана.