Online-knigi.org
online-knigi.org » Книги » Научно-образовательная » Математика » Трехмерный мир. Евклид. Геометрия - Коллектив авторов (книги онлайн без регистрации .txt) 📗

Трехмерный мир. Евклид. Геометрия - Коллектив авторов (книги онлайн без регистрации .txt) 📗

Тут можно читать бесплатно Трехмерный мир. Евклид. Геометрия - Коллектив авторов (книги онлайн без регистрации .txt) 📗. Жанр: Математика / Научпоп. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Единственный способ быть последовательными в этом случае — принять это предложение как постулат, что сделал много веков спустя немецкий математик Давид Гильберт (1862-1943) в своей строгой аксиоматизации геометрии.

Трехмерный мир. Евклид. Геометрия - _26.jpg

РИС. 2

ПРЯМАЯ, КОТОРОЙ НИКОГДА НЕ БЫЛО

Несмотря на определения 2, 3 и 4 из книги I, Евклид ни разу не объяснил, что такое прямая, каковы ее свойства и каким критериям она должна отвечать. Тем не менее он ясно определил, что прямые конечны и их концами являются точки. В действительности Евклид занимался отрезками прямых. Но когда он говорит о равной длине диаметра в определении круга, то использует понятие расстояния. Для прямых его применил позже Архимед в первой аксиоме своего сочинения «О шаре и цилиндре»: «Прямая — кратчайшее расстояние между двумя точками». Как мы увидели на примере предложения 4, Евклид использовал постулаты, не устанавливая их. В доказательстве предложения 1 книги I, проанализированном в главе 2, содержится утверждение, которое мы сейчас подробно рассмотрим:

Проведем прямые СА и СВ из точки пересечения двух окружностей С.

Что может служить гарантией существования точки С по Евклиду? Ничего, кроме рисунка, иллюстрирующего доказательство. Но это неприемлемо, так как рисунок может считаться правильным, только если точка С существует (вспомним изображения невозможных треугольников, использующиеся в доказательствах методом доведения до абсурда).

ИСКРИВЛЕНИЕ ФИГУР

Вопрос искривления возникает в «Началах» неявно. Перед тем как перейти к постулату о параллельных прямых, Евклид устанавливает очень интересный результат:

Книга I, предложение 17. Во всяком треугольнике сумма двух любых углов меньше двух прямых углов.

Чтобы правильно понять эту задачу, мы должны внимательно следовать за рассуждениями Евклида. Он хочет доказать, что сумма углов <BAG и <AGB меньше двух прямых углов. Для этого он переносит угол <EGZ, равный <BAG, к углу <AGB и наблюдает, что их сумма будет меньше, чем сумма <AGB и <AGD. Каким образом он переносит угол? Построив треугольник, который будет содержать его. Как? Согласно следующему доказательству:

1. Он делит сторону AG пополам и получает точку Е (Книга I, предложение 10).

Трехмерный мир. Евклид. Геометрия - _27.jpg

2. Соединяет В и Е (постулат 1) и удваивает этот отрезок (постулат 2 и книга I, предложение 2). Получается точка Z.

3. Соединяет ее с точкой G (постулат 1). Евклид получает два равных треугольника (книга I, предложение 4), так как стороны ZE и EG треугольника ZEG равны сторонам BE и ЕА треугольника БЕЛ соответственно, по построению, а углы <GEZ и <АЕВ противоположны вершине и равны (книга I, предложение 15). Следовательно, оба треугольника равны, а угол <EGZ (который добавляется к углу <AGB) равен углу <BAG, что и требовалось доказать.

Евклид получил такой результат, поскольку точка Z располагается внутри угла <AGD. Но не может ли она располагаться и снаружи этого угла? Ответ на этот вопрос, которым Евклид даже не задавался, отрицательный, так как в его геометрии линии не искривляются. Для Евклида это само собой разумеется, но мы увидим, что эти логические лакуны обесценивают некоторые его доказательства.

Трехмерный мир. Евклид. Геометрия - _28.jpg

В постулате 5 Евклид утверждает, что при некоторых условиях две прямые пересекаются: «Существует точка, принадлежащая им обеим». А в случае с окружностями он принимает это за такой очевидный факт, что не считает нужным говорить об этом. Здесь мы опять сталкиваемся со скрытым постулатом.

Равносторонний треугольник, построенный на отрезке АВ в первом предложении, существует, поскольку построение Евклида верно; но оно зависит от существования точки С. В реальности, в которой этой точки нет, не будет и треугольника. От этого зависят многие из первых доказательств Евклида. Возможность построения в «Началах» зависит от возможности построения точек. Ученый определяет необходимые и достаточные условия, при которых две прямые пересекаются, и правильно обозначает точки, появляющиеся таким образом. Но при этом он не говорит, при каких условиях пересекаются прямая и окружность, и следовательно, точки, получающиеся в местах их пересечения, как бы не существуют.

Я прихожу все более к убеждению, что необходимость нашей геометрии не может быть доказана, по крайней мере человеческим рассудком и для человеческого рассудка.

Карл Фридрих Гаусс

Хотя он мог бы сделать это очень просто, достаточно было уточнить, например в случае с окружностями, следующее.

Постулат о пересечении двух окружностей. Если расстояние между центрами двух окружностей меньше половины суммы их диаметров [то есть меньше суммы радиусов этих окружностей], то эти окружности пересекаются в двух точках.

Аналогичным образом можно определить условие, позволяющее выявить существование двух точек, образованных в результате пересечения окружности и прямой: прямая и окружность пересекаются [в двух точках], если перпендикуляр, идущий от центра окружности к прямой, меньше ее радиуса. Но Евклид ничего не говорит по этому поводу.

ПОСТУЛАТ О ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ

Все ученые, занимающиеся «Началами», согласны в том, что их структура и, в частности, постулат 5 (мы будем кратко обозначать его П5) принадлежат самому Евклиду. Это знаменитый постулат о параллельных прямых, который в формулировке Евклида гласит, что «в определенных условиях две прямые неизбежно пересекутся». Евклид впервые применяет его только в предложении 29 первой книги. Та часть геометрии, которая не зависит от этого постулата, получила название абсолютной геометрии. Дословно в пятом постулате говорится следующее.

Постулат 5 (П5). Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные эти две прямые неограниченно встретятся с той стороны, где углы, меньшие двух прямых.

Обычно постулат о параллельных прямых изучается не в этой оригинальной формулировке, а в том виде, в котором его изложил шотландский математик Джон Плейфэр (1748— 1819), профессор математики, а впоследствии и философии в Эдинбургском университете.

Трехмерный мир. Евклид. Геометрия - _29.jpg

Постулат Плейфэра (ПП). В плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.

Это утверждение имеет точно такой же смысл, как и постулат Евклида, и подчеркивает, что для П5 необходимы два условия: с одной стороны, существование «прямой, параллельной данной прямой, проведенной через точку, не лежащую на последней», а с другой стороны, эта прямая должна быть единственной. Это существование Евклид дает в предложении 31:

КРИВАЯ И ЕЕ АСИМПТОТА

При помощи пятого постулата Евклид предотвращает асимптотичность «искривления» прямых, как в случае с гиперболой и ее асимптотой (эта предосторожность тем более необходима, поскольку, как мы уже увидели, Евклид не дает полного определения прямой, так что мы не знаем ее полных основных свойств).

Перейти на страницу:

Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


Трехмерный мир. Евклид. Геометрия отзывы

Отзывы читателей о книге Трехмерный мир. Евклид. Геометрия, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*