(Не)совершенная случайность. Как случай управляет нашей жизнью - Млодинов Леонард (читать бесплатно полные книги .TXT) 📗
Вышло так, что колени доконали Мантла, и он дошел только до 54 пробежек. Марис же побил рекорд Рута – у него получилась 61 пробежка. За всю свою спортивную карьеру Бейб Рут четыре раза выдал в сезоне 50 и более пробежек, двенадцать раз был абсолютным чемпионом в лиге. Марис никогда больше не достиг результата в 50 и даже 40 и никогда больше не лидировал в лиге. Все это вызвало лишь чувство обиды. Со временем на Мариса обрушилась безжалостная критика со стороны болельщиков, спортивных журналистов, да и самих бейсболистов. Вердикт был таков: он не выдержал испытания чемпионством. Один известный ветеран от бейсбола сказал: «Марису и думать было нечего побить рекорд Рута» [23]. Возможно, так оно и есть, но причины здесь совсем не те, о которых говорил ветеран.
Спустя много лет под влиянием того самого курса по теории вероятностей я стал смотреть на достижения Мариса в совершенно ином свете. Чтобы проанализировать состязание между Рутом и Мантлом, я перечитал старый номер «Лайфа» и наткнулся на коротенькое обсуждение теории вероятностей [24] и того, как с ее помощью прогнозировать исход состязания. Я решил произвести собственные математические расчеты полных пробегов. Вот как это было. Результат любого выхода на биту (и, следовательно, потенциального успеха) зависит в первую очередь, конечно же, от способностей игрока. Однако зависит он и от множества других факторов: состояния здоровья спортсмена, скорости и направления ветра, солнечной или пасмурной погоды, качества освещения на стадионе, типа подачи, текущей ситуации в игре, прогнозирования того, как будет лететь мяч, слаженной работы рук и глаз, брюнетки, с которой спортсмен познакомился накануне в баре и которую повел к себе, булочки с сосиской, острым сыром и чесночной поджаркой, которую он съел на завтрак и которая теперь лежит в его желудке камнем. Если бы не всевозможные непредвиденные факторы, игрок либо отбивал бы, либо не отбивал каждый удачный удар. Случайные факторы, влияющие на сотни выходов на биту, которые бывают у игрока за год, дают среднее количество пробежек, которое растет вместе с опытностью игрока и в конце концов убывает под влиянием того самого процесса, благодаря которому симпатичное лицо спортсмена покрывают морщины. Но иногда случайные факторы не выводят среднее количество. Как часто такое случается и насколько велико отклонение?
Исходя из ежегодной статистики игрока, можно вычислить вероятное количество пробежек при каждой возможности, то есть при каждом выходе к базе [25]. В 1960 г., за год до своего рекорда, Роджер Марис отбивал 1 из каждых 14,7 возможных (примерно столько же, сколько у него получалось в среднем в течение четырех самых удачных лет). Давайте примем такой результат Мариса за обычный. Можно вычислить уровень мастерства Мариса в обычном исполнении следующим образом. Представьте, что орел выпадает в среднем не 1 раз в 2 броска, а 1 раз в 14,7 броска. Подбрасывайте монету 1 раз в каждом случае, когда игрок дорывается до площадки, и присуждайте Марису 1 отбивку мяча каждый раз, когда выпадет орел. Если вы хотите сравнить, как Марис выступал в сезоне, скажем, 1961 г., бросайте монету на каждую возможную отбивку, выпадавшую Марису в тот год. Таким способом вы выстроите целый ряд альтернативных сезонов 1961 г., в которых уровень мастерства Мариса сравнивается с общим числом отбивок обычного выступления. Эти сымитированные сезоны продемонстрируют серию результатов, которые можно было ожидать от Мариса в 1961 г., если бы не его талант, то есть если брать только его способности к «обычным» отбивкам и эффект чистого везения.
Чтобы в самом деле поставить такой эксперимент, мне бы потребовалась необычная монета, натренированное запястье и разрешение не ходить на лекции. В действительности же математические расчеты, основанные на теории случайности, позволили мне провести анализ с помощью формул и компьютера. В большинстве сымитированных мной сезонов 1961 г. обычная цифра отбивок Мариса не выходила за пределы, обычные для Мариса, и это неудивительно. Лишь изредка он отбивал либо намного больше, либо намного меньше. Насколько часто Марис со своими «обычными» результатами выдавал результаты Рута?
Я предполагал, что шансы Мариса с его «обычными» отбивками сравняться с рекордом Рута будут примерно равны шансам Джека Уиттакера, когда несколько лет назад тот, покупая в магазинчике печенье на завтрак, добавил еще один доллар и в результате оказался победителем лотереи штата, получив 314 тыс. долларов. Таковы должны были быть шансы менее способного игрока. Однако Марис с его «обычными» отбивками, хоть и не был Рутом, все же находился на уровне гораздо выше среднего. Так что случайная вероятность для Мариса поставить рекорд была вовсе не микроскопической: предполагалось, что он сравняется с результатом Рута или побьет его 1 раз в каждые 32 сезона. Может, это и не такая уж высокая вероятность, и возможно, вы не захотели бы поставить ни на Мариса, ни в особенности на 1961 г. Однако эта вероятность подводит к удивительному выводу. Чтобы понять, почему, зададим вопрос поинтересней. Рассмотрим всех, абсолютно всех игроков со способностями, равными «обычному» Марису, которых от рекорда Рута до «стероидной эры» (когда спортсмены стали принимать препараты и соответственно отбивать гораздо лучше) отделяют аж семьдесят лет. Какова вероятность, что некоторые игроки в некоторый момент достигнут рекорда Рута или побьют его по чистой случайности? Разумно ли считать, что в тот сезон Марису самым банальным образом повезло?
Согласно истории, в тот период на каждые 3 года приходилось примерно по 1 игроку со способностями и возможностями, сравнимыми со способностями и возможностями «обычного» Мариса 1961 г. Когда вы все суммируете, у вас получится вероятность – благодаря чистой случайности один из тех игроков мог бы запросто сравняться с Рутом или побить его рекорд, и случайность эта равняется немногим более 50 %. Другими словами, за период в семьдесят лет случайный рывок в 60 или более отбивок для игрока, от которого ожидают не более 40, – феномен, нечто вроде внезапного громкого треска, который возникает посреди помех при плохой телефонной связи. И уж конечно же, мы станем боготворить либо чернить (и наверняка бесконечно анализировать) этого «везунчика», кем бы он ни оказался.
Невозможно утверждать наверняка, действительно ли Марис играл в 1961 г. лучше всего или же ему просто-напросто подфартило. Подробный анализ бейсбола и других спортивных игр такими именитыми учеными, как ныне покойный Стивен Джей Гулд и нобелевский лауреат Э. М. Перселл, доказывает: модели с подбрасыванием монет вроде тех, которые описал я, очень схожи с реальным выступлением и игроков, и команд, включая их «холодные и горячие периоды» [26] [27].
Когда мы рассматриваем невероятный успех, будь то в спорте или где еще, необходимо помнить о следующем: необычные события могут происходить без необычных тому причин. Случайные события часто выглядят как неслучайные, и, истолковывая все, что связано с человеком, нужно быть осторожным – не спутать одно с другим. Прошло не одно столетие, прежде чем ученые научились смотреть дальше очевидного порядка и распознавать скрытую случайность в при роде и повседневной жизни. В данной главе я коротко познакомил вас с принципами действия. В последующих же главах рассмотрю основные положения случайности в историческом контексте и значимость этих положений. Таким образом, окружающий нас повседневный мир получит иную перспективу, вы лучше поймете связь между этим основным аспектом природы и нашим собственным опытом.
Глава 2. Законы правды и полуправды
Когда человек смотрит на небо в безоблачную, безлунную ночь, его глаз различает тысячи мерцающих источников света. Беспорядочно раскиданные по небу звезды на самом деле расположены в определенной закономерности – в виде созвездий. Там Лев, здесь Большая Медведица… Умение распознавать созвездия может быть как преимуществом, так и недостатком. Исаак Ньютон размышлял над закономерностями падения предметов и вывел закон всемирного тяготения. Кто-нибудь другой подмечает, что удачно выступает в спортивных состязаниях, когда на нем ношеные носки, – вот и ходит в грязных. Как распознать среди всевозможных закономерностей природы те, которые действительно имеют смысл? Ответ на этот вопрос можно дать, основываясь исключительно на практике. Геометрия родилась из набора аксиом, теорем, доказательств, разработанных крупными философами, однако не удивляйтесь тому, что теория случайности оказалась порождением умов, интересовавшихся гаданиями и азартными играми, то есть тех, кого мы скорее представим с игральными костями или волшебным снадобьем, нежели с книгой или свитком в руках.