Вселенная, жизнь, разум - Шкловский Иосиф Самуилович (читать книги полностью без сокращений .TXT) 📗
Спустя два года после открытия космических мазеров на гидроксиле (линия 18 см) было установлено, что те же источники одновременно излучают (также мазерным механизмом) линию водяных паров, длина волны которой 1,35 см. Интенсивность «водяного» мазера даже больше, чем «гидроксильного». Облака, излучающие линию Н2О, хотя и находятся в том же малом объеме, что и «гидроксильные» облака, движутся с другими скоростями и значительно более компактны. Нельзя исключать, что в близком будущем будут обнаружены и другие мазерные линии. [18] Таким образом, совершение неожиданно радиоастрономия превратила классическую проблему звездообразования в ветвь наблюдательной астрономии. [19]
Оказавшись на главной последовательности и перестав сжиматься, звезда длительно излучает, практически не меняя своего положения на диаграмме «спектр – светимость». Ее излучение поддерживается термоядерными реакциями, идущими в центральных областях. Таким образом, главная последовательность представляет собой как бы геометрическое место точек на диаграмме «спектр – светимость», где звезда (в зависимости от ее массы) может длительно и устойчиво излучать благодаря термоядерным реакциям.
Место звезды на главной последовательности определяется ее массой. Следует заметить, что имеется еще один параметр, определяющий положение равновесной излучающей звезды на диаграмме «спектр – светимость». Таким параметром является первоначальный химический состав звезды. Если относительное содержание тяжелых элементов уменьшится, звезда «ляжет» на диаграмме ниже. Именно этим обстоятельством объясняется наличие последовательности субкарликов. Как уже говорилось выше, относительное содержание тяжелых элементов у этих звезд в десятки раз меньше, чем у звезд главной последовательности.
Время пребывания звезды на главной последовательности определяется ее первоначальной массой. Если масса велика, излучение звезды имеет огромную мощность, и она довольно быстро расходует запасы своего водородного «горючего». Так, например, звезды главной последовательности с массой, превышающей солнечную в несколько десятков раз (это горячие голубые гиганты спектрального класса О), могут устойчиво излучать, находясь на этой последовательности всего лишь несколько миллионов лет, в то время как звезды с массой, близкой к солнечной, находятся на главной последовательности 10–15 млрд лет. Ниже приводится табл. 2, дающая вычисленную продолжительность гравитационного сжатия и пребывания на главной последовательности для звезд разных спектральных классов. В этой же таблице приведены значения масс, радиусов и светимостей звезд в солнечных единицах.
Таблица 2
Из таблицы следует, что время пребывания на главной последовательности звезд, более «поздних», чем КО, значительно больше возраста Галактики, который, по существующим оценкам, близок к 15–20 млрд лет.
«Выгорание» водорода (т. е. превращение его в гелий при термоядерных реакциях) происходит только в центральных областях звезды. Это объясняется тем, что звездное вещество перемешивается лишь в центральных областях звезды, где идут ядерные реакции, в то время как наружные слои сохраняют относительное содержание водорода неизменным. Так как количество водорода в центральных областях звезды ограниченно, рано или поздно (в зависимости от массы звезды) он там практически весь «выгорит». Расчеты показывают, что масса и радиус центральной ее области, в которой идут ядерные реакции, постепенно уменьшаются, при этом звезда медленно перемещается, на диаграмме «спектр – светимость» вправо. Этот процесс происходит значительно быстрее у сравнительно массивных звезд. Если представить себе группу одновременно образовавшихся эволюционирующих звезд, то с течением времени главная последовательность на диаграмме «спектр – светимость», построенная для этой группы, будет как бы загибаться вправо.
Что же произойдет со звездой, когда весь (или почти весь) водород в ее ядре «выгорит»? Так как выделение энергии в центральных областях звезды прекращается, температура и давление не могут поддерживаться там на уровне, необходимом для противодействия силе тяготения, сжимающей звезду. Ядро звезды начнет сжиматься, а температура его будет повышаться. Образуется очень плотная горячая область, состоящая из гелия (в который превратился водород) с небольшой примесью более тяжелых элементов. Газ в таком состоянии носит название «вырожденного». Он обладает рядом интересных свойств, на которых мы здесь останавливаться не можем. В этой плотной горячей области ядерные реакции происходить не будут, но они будут довольно интенсивно протекать на периферии ядра, в сравнительно тонком слое. Вычисления показывают, что светимость звезды и ее размеры начнут расти. Звезда как бы «разбухает» и начнет «сходить» с главной последовательности, переходя в области красных гигантов. Далее, оказывается, что звезды-гиганты с меньшим содержанием тяжелых элементов будут иметь при одинаковых размерах более высокую светимость.
На рис. 5 приведены теоретически рассчитанные эволюционные треки на диаграмме «светимость – температура поверхности» для звезд разной массы. При переходе звезды в стадию красного гиганта скорость ее эволюции значительно увеличивается.
Рис. 5. Эволюционные треки для звезд разной массы на диаграмме «светимость – температура
Для проверки теории большое значение имеет построение диаграммы «спектр – светимость» для отдельных звездных скоплений. Дело в том, что звезды одного и того же скопления (например, Плеяды) имеют, очевидно, одинаковый возраст. Сравнивая диаграммы «спектр – светимость» для разных скоплений – «старых» и «молодых», можно выяснить, как эволюционируют звезды. На рис. 6 и 7 приведены диаграммы «показатель цвета – светимость» для двух различных звездных скоплении. Скопление NGC 2254 – сравнительно молодое образование. На соответствующей диаграмме отчетливо видна вся главная последовательность, в том числе ее верхняя левая часть, где расположены горячие массивные звезды (показателю цвета —0,2 соответствует температура 20 тыс. К, т. е. спектр класса В).
Шаровое скопление М3 – «старый» объект. Ясно видно, что в верхней части главной последовательности диаграммы, построенной для этого скопления, звезд почти нет. Зато ветвь красных гигантов у М3 представлена весьма богато, в то время как у NGC 2254 красных гигантов очень мало. Это и понятно: у старого скопления М3 большое число звезд уже успело «сойти» с главной последовательности, в то время как у молодого скопления NGC 2254 это произошло только с небольшим числом сравнительно массивных, быстро эволюционирующих звезд. Обращает на себя внимание, что ветвь гигантов для М3 идет довольно круто вверх, а у NGC 2254 она почти горизонтальна. С точки зрения теории, это можно объяснить значительно более низким содержанием тяжелых элементов у М3. И действительно, у звезд шаровых скоплений (так же, как и у других звезд, концентрирующихся не столько к галактической плоскости, сколько к галактическому центру) относительное содержание тяжелых элементов незначительно.
Рис. 6. Диаграмма Герцшпрунга-Рассела для звездного скопления NGC2254
На диаграмме «показатель цвета – светимость» для М3 видна еще одна почти горизонтальная ветвь. Аналогичной ветви на диаграмме, построенной для NGC 2254, нет. Теория объясняет появление этой ветви следующим образом. После того как температура сжимающегося плотного гелиевого ядра звезды – красного гиганта – достигнет 100–150 млн К, там начнет идти новая ядерная реакция. Эта реакция состоит в образовании ядра углерода из трех ядер гелия. Как только начнется эта реакция, сжатие ядра прекратится.