Моделирование рассуждений. Опыт анализа мыслительных актов - Поспелов Дмитрий Александрович
Рассмотрим еще одну цитату из того же стихотворения: «…Если трон находится в стране в руках деспо?та, тогда дворянства первая забота сменить основы власти и закон». Введем два элементарных высказывания: g – «Трон находится в стране в руках деспо?та» и h – «Дворянства первая забота сменить основы власти и закон». Тогда логическая структура всего высказывания может быть представлена в виде (ЕСЛИ g ТОГДА h). Для перехода к правильной формуле исчисления высказываний воспользуемся импликацией. Раньше она не встречалась. По определению выражение ?
? истинно во всех случаях, кроме того, когда ? истинно, а ? ложно. Другими словами, из истинности ? в импликации, которая является истинной, всегда следует истинность ?.Исследуем запись (g
h). Если g истинно, то h должно быть истинно, если фраза, которая вложена Д. Самойловым в уста Пестеля, является истинной. Это хорошо, но что будет в случае, когда утверждение g ложно? Для импликации это означает, что как при истинности h, так и при его ложности вся фраза в целом остается истинной. Другими словами, если неверно, что «Трон находится в стране в руках деспо?та», то дворянство может менять основы власти и закона, а может этого и не делать. Всё равно сложное высказывание будет сохранять свою истинность. Если же мы потребуем, чтобы при ложности g всегда было бы ложным и все высказывание целиком, сохраняя остальные свойства импликации, то мы опять вернемся к конъюнкции.Наверное, самым разумным с точки зрения здравого смысла было бы вообще отказаться от определения истинности или ложности выражения (ЕСЛИ ? ТОГДА ?), когда ? является ложным. Ибо для выводов в этом случае нет никакой информации. Во второй главе мы использовали знак выводимости
. Вот с его-то помощью и можно формализовать случай, когда в записи gh из истинности g всегда следует истинность h, а при ложности g ничего сказать нельзя. Но знак выводимости не является логической связкой и не входит в синтаксис исчисления высказываний. Поэтому, оставаясь в рамках этого исчисления, мы вынуждены пользоваться импликацией.И еще одно замечание, касающееся импликации. Эта связка, как и разделительная дизъюнкция, может быть сведена к комбинации других связок, имеющихся в исчислении. Читатели легко могут убедиться в справедливости замены ?
? на ??. Однако по ряду причин в исчислении высказываний в его классической форме импликация сохраняется как самостоятельная связка [5].Не нужно думать, что переход от фраз на естественном языке к соответствующим им правильным формулам исчисления высказываний столь прост. На этом пути стоит немало трудностей, И прежде всего потому, что частицы и союзы языка типа НЕ, И, ИЛИ, ТО, ЕСЛИ и т.п. не являются однозначными свидетельствами наличия похожих на них связок. Цитата из стихотворения «Смерть поэта» Д. Самойлова иллюстрирует это положение:
Встречающиеся здесь И и ИЛИ не являются прямыми аналогами связок исчисления высказываний.
Мы ввели множество базовых элементов и множество синтаксических правил. Теперь необходимо ввести множество аксиом. В логике в качестве множества аксиом выбирают обычно совокупность правильных формул, которые являются общезначимыми (или тождественно истинными). Высказывания, описываемые этими формулами, таковы, что они всегда истинны. Вот пример такого множества формул:
Читатели могут сами убедиться в том, что при всех комбинациях истинности и ложности формул ?, ? и ? четыре выписанные аксиомы всегда являются истинными. Такие аксиомы принято называть абсолютными или логическими.
Перейдем к описанию правил вывода R. Вспомним, что Аристотель, создавая свои силлогистические правила, добивался того, чтобы из истинных посылок всегда следовали истинные заключения. Если в качестве аксиом используются абсолютные аксиомы, то правила вывода должны обладать тем свойством, что их применение не должно нарушать истинность. Другими словами, из тождественно истинных формул должны выводиться лишь тождественно истинные формулы. Введем, учитывая это, два правила вывода исчисления высказываний.
Первое правило носит название правило подстановки. Согласно ему в формулу, которая уже выведена, можно вместо некоторого высказывания подставить любое другое при непременном условии, что эта подстановка сделана во всех местах вхождения заменяемого высказывания в данную формулу. Такая подстановка сохраняет свойство формулы быть тождественно истинной. Если в аксиому (?
(??)) вместо ? подставить любую формулу, например (?&?), то формула ((?&?)((?&?)?)) останется тождественно истинной, что легко доказывается перебором всех комбинаций истинностных значений ? и ? и проверкой того, что для всех них полученная формула остается истинной.Второе правило называется модус поненс (лат. modus ponens) или правило заключения и выглядит следующим образом: если ? и (?
?) являются истинными формулами, то формула ? также истинна. Если ? является истинной, то истинность (??) означает, что ? является истинной. Поэтому правило заключения не портит истинности выводимых формул.Мы полностью описали исчисление высказываний. Заметим еще раз, что оно устроено так, что в результате выводов из аксиом получаются лишь тождественно истинные формулы. Можно показать, что система логических аксиом может быть выбрана таким образом, что для любой тождественно истинной формулы всегда найдется цепочка выводов (логических рассуждений), с помощью которой она будет выведена из системы аксиом путем применения правил подстановки и заключения. Другими словами, может быть построена полная система аксиом, из которой будут выводиться все тождественно истинные формулы и только они. Как показали исследования логиков, таких полных систем аксиом существует много. Система из четырех аксиом, которую мы только что рассмотрели является полной. Ее предложил известный немецкий математик и логик Д. Гильберт.
Подобное свойство исчисления высказываний позволяет достаточно легко ответить на кардинальный вопрос, возникающий для любой формальной системы: принадлежит ли некоторая правильная формула к множеству формул, выводимых в данной формальной системе? Для ответа на этот вопрос надо построить таблицу, в которой в левой части перечислены все возможные комбинации значений истины и лжи для высказываний, входящих в эту формулу (легко видеть, что при n различных таких высказываниях число комбинаций будет равно 2n), а в правой части выписаны значения истинности проверяемой формулы. Если правый столбец состоит только из значений «истина», то формула выводима в исчислении высказываний. В противном случае ее выводимость не имеет места.
5
Легко также проверить, что из трех связок
, & и можно оставить только две, так как ?&? заменяется на (??), а ?? на (?&?).