Диалоги (май 2003 г.) - Гордон Александр (книги хорошем качестве бесплатно без регистрации TXT) 📗
Из протогалактик образовались первые звёзды. Они были очень яркие, они были очень большие, больше Солнца в сотни раз по диаметру. Они привели к сильной ионизации окружающего молекулярного газа. Я, конечно, опускаю целый ряд моментов. И всё это послужило началом того этапа расширения Вселенной, который длится до сих пор. Потом из протогалактик получились звёзды, а потом звёздные системы – галактики, а далее – скопления галактик. Это всё можно наблюдать, это достижения оптической и радиоастрономии, среди которых следует упомянуть открытый Хабблом важный закон разбегания галактик, который лежит в основании теории Большого взрыва и подтверждает модель расширения Вселенной из первоначальной сингулярности.
Вопрос в другом: и что дальше? Но прежде: не что дальше, а что внутри всего этого дела? Уже ясно, и мы сегодня немножко касались этого, что химические элементы формировались в недрах звёзд где-то уже спустя миллионы лет после взрыва. Из данных астрономии, которые сейчас позволяют ретроспективно «уйти» на несколько миллиардов лет назад, видно обеднение спектра излучения далёких объектов – количество химических элементов было меньше, чем сейчас. Но ведь вещество действительно составляет очень малую часть Вселенной. Всё остальное – тёмная материя: это элементарные частицы, но тут много дискуссионного, неоткрытого до конца. А вот дальше, если мы будем говорить о структуре галактик, эволюция которых прослежена и неплохо, то там можно выделить отдельные звёздные системы. Теперь уже известно, что существуют планетарные системы не горячие, некие тела больших размеров, которые не коллапсируют, у которых температура не несколько тысяч градусов – это была версия, – а гораздо меньше, и где возможны условия для других процессов. Так вот что это такое? Мы видим уже новые агрегатные состояния вещества, есть образования не просто газов, а конденсированых сред: жидких, твёрдых. Они принимают определённую форму, которая определяется динамикой их движения, и если у них есть атмосфера – газовая оболочка вокруг них – то формы получаются более гладкие, сглаженные.
Бурная история Земли, которая тоже неплохо изучена, говорит о том, что сначала это была горячая планета (но не сверхгорячая, как звезда), и там была бурная тектоническая деятельность, менялся химический состав атмосферы, менялось содержание разных элементов в ней, которые были захвачены на предыдущей стадии.
Вот эволюция неживой материи. От отдельных атомов к молекулам, к изменению агрегатного состояния, к образованию «огромных» форм из этих агрегатных состояний гидросферы, атмосферы, суши. Плюс взаимодействие с очень сложными процессами изменений климата, я уже не говорю о погоде. Плюс учёт природы, как огромной системы, как того, что изучают науки о земле. С учётом различных полей, которые влияют на наши условия, – это электромагнитные взаимодействия и гравитационные. Всё остальное находится гораздо более компактно. Так вот это эволюция неживой материи.
Я думаю, тут можно поставить и точку, конечно, если говорить о том, что нынешнее состояние довольно протяженно во времени – и будет протяжённым. И это существенный момент.
М.К. Позвольте мне, а то сейчас время закончится. Надо нам всё-таки сказать о том, что формирование жизни – это естественный процесс эволюции материи. И везде во Вселенной, где имеются соответствующие условия, может существовать жизнь. То есть, Земля – это не единственное космическое обитаемое тело. Не единственное. И если учесть, что во Вселенной имеется около десяти в одиннадцатой степени звёзд, которые могут иметь планетные системы, то вероятность таких условий, как на Земле, повышается. И ещё я хотел бы обратить внимание на то, что и неживая, и живая природа обладают модульным принципом построения.
М.Л. Я согласен.
М.К. Сейчас особенно большие успехи делает генетика. Показано, что эволюция идёт не в результате точечных мутаций изменения гена, а модулями, как в архитектуре. Вы можете из кирпича построить и простую хижину, и дворец, и храм. И вот из этих генов можно построить любой – ну, не любой, а разные организмы.
М.Л. И вот тут важно проследить переход от того, что мы знаем о неживой материи, к живой. В чём он заключается? Тут ответа нет пока, это сложный вопрос.
М.К. Потому что чёткого перехода нет.
М.Л. Конечно. Но вместе с тем он позволяет определить некие формы переходные, которые, с одной стороны, по своей структуре, атомному составу, могут быть отнесены скорее к неживой природе, но которые приобретают новые функции, которые могут их отличать от обычной неживой природы в дальнейшем развитии, самоорганизации.
М.К. Всё-таки эволюция квантована, хотя ты, по-моему, с этим не очень согласен? Поэтому есть индивидуумы, есть отдельные виды, есть мужчины, есть дети – это всё кванты жизни. Поэтому переходные формы, о которых ты сказал, мы не наблюдаем. Нет переходных форм между живым и неживым.
А.Г. Но мы и эволюцию не наблюдаем. Мы наблюдаем только историю эволюции.
М.Л. Это могло совершиться когда-то.
М.К. В общем-то есть некоторые наблюдения по формированию новых видов, но они очень скромные, сейчас о них говорить, по-видимому, не стоит.
М.Л. Конечно. Дело в том, что и существование науки, которая позволяет всё это проследить, – это ничтожная искорка. Такой ничтожный момент времени, что тут вопросов можно задать много, и даже задать их ещё надо уметь. Поэтому вот путь, который мы считаем очень перспективным: первое – и в неживой, и в живой природе происходит усложнение. Второе – очень существенны процессы самоорганизации, которые и могли быть тем переходным мостиком, который преодолел этот разрыв.
И где-то должны были быть, конечно, качественные скачки…
Возникновение биологической информации
Участник:
Дмитрий Чернавский – доктор физико-математических наук
Александр Гордон: Доброй ночи! Феномен возникновения живого входит в явное и, я бы сказал, яркое противоречие с теорией вероятности – не только феномен возникновения, но и биологической эволюции. Принято считать, что вероятность возникновения жизни приблизительно равна вероятности самосборки самого современного «Боинга» из деталей, которые валяются на свалке. Но так ли неодолимы эти противоречия между теорией вероятности и возникшей всё-таки жизнью?
Дмитрий Чернавский: Проблема возникновения жизни волновала давно, и она состоит из нескольких этапов. Каждый этап был в своё время проблематичен.
Первая проблема. Как возникли необходимые органические молекулы? Эта проблема решена химиками и физиками. Нужно представить себе обстановку в предбиологический период. Обстановка была крайне, так сказать, термодинамически неравновесной. Там «беспрерывно гром гремел, во мраке молния сверкала», вулканы извергались. Ну и в результате образовались органические молекулы. Проблема решена была.
Вторая проблема. Образовались молекулы, но их мало, а нужно, чтобы они были сконцентрированы. Вот эту проблему фактически решил Опарин в 20-х годах прошлого столетия. Он показал, что действительно органические молекулы типа липидов и аминокислот могут собираться в капли. Он назвал это коацерватами. И проблема была решена.
Третья проблема. Хорошо, аминокислоты собираются, нуклеотиды собираются, но в жизни-то полинуклеотиды – они длинные. Как они могли образовываться сами в предбиологический период? Проблема решена была Фоксом и Егами. Показано было, что могли они образовываться, но, разумеется, случайные. И тут возникла четвёртая проблема.
Проблема в следующем. Биологические полимеры – они же не случайные. Они содержат информацию. Напомню, что основными полимерами являются ДНК или РНК – они хранители информации, в них последовательность несёт эту информацию. А рабочими телами являются белки. Известно, что в современной биосфере нуклеотиды кодируют белки – ко-ди-ру-ют. Что это значит? Это значит, что в соответствии с последовательностью нуклеотидов образуется последовательность белков, каждая тройка нуклеотидов – кодон – кодирует или соответствует одной аминокислоте и получается, таким образом, заданная последовательность белка. Затем она сворачивается и, в зависимости от последовательности, получается тот или иной белок, с той или иной функцией.