Как устроена машина времени? - Зигуненко Станислав Николаевич (читать книги онлайн полностью .TXT) 📗
Из чисто логических построений Эйнштейна вскоре последовали и практические расчеты зависимости течения, времени от скорости движения. Позвольте здесь опустить математические выкладки (как помните, их не очень жаловал и сам Эйнштейн) и сообщить вам сразу конечный результат. В движущейся системе координат время замедляется по отношению к неподвижной системе в зависимости от близости скорости движения нашего объекта к скорости света.
Это уже дает нам по крайней мере одну 'принципиальную возможность построить машину времени. Садитесь в ракету, отправляйтесь в длительное путешествие, разогнавшись до скорости, близкой к световой, и вы вернетесь на Землю значительно более молодым, чем ваши современники, провожавшие вас в полет.
В «Популярной физике» Дж. Орира даже приводится точный рас-i чет, насколько вы будете моложе. Если один из близнецов в возрасте 20 лет отправится в космическое путешествие к звезде Арктур на корабле, летящем со скоростью 0,99 скорости света, то, преодолев два раза расстояние в 40 световых лет (до звезды и обратно), он вернется на Землю через 11,4 года по корабельному времени. На Земле же за это время пройдет 80,8 года. Так что брат, оставшийся на планете, должен очень постараться, чтобы дождаться возвращения межзвездного путешественника. Ведь ему к моменту возвращения корабля стукнет 108,8 года! Космический путешественник окажется моложе его на целую жизнь– 69,4 года!
Так что летайте субсветовыми звездолетами! Вы сэкономите себе массу времени! И был совершенно прав известный писатель В. Войнович, когда в одной из своих книг послал своего героя преодолевать 100-летний промежуток именно таким образом. Отправил его звездолетом в путешествие, а когда тот вернулся, на Земле прошло ровно столетие.
«Ну, фантасты способны еще и не на такие чудеса, – вполне справедливо скажете вы. – А вот нам-то, ныне живущим, какой прок от подобных машин времени? Субсветовых звездолетов пока нет, и рассчитывать, что они появятся при нашей жизни, знаете, как-то не приходится…»
Что верно, то верно. И потому на сегодняшний день единственные люди, которые могут воспользоваться выводами из теории Эйнштейна в своих практических целях, – это астрономы.
Расстояния во Вселенной не случайно измеряются световыми годами. Световой год – это тот путь, который световой луч может преодолеть, пока на Земле пройдет год. Стало быть, глядя на звезды, мы видим их не такими, какие они есть в настоящее время, а такими, какими они были 40, 50 и более световых лег назад.
«…Как свет умерших звезд доходит», – сказал В. Маяковский. Сегодня мы видим свет небесных объектов, которых на самом деле уже нет. А самое главное, таким образом мы можем заглянуть в собственное прошлое и прогнозировать отдаленное будущее!
Здесь на помощь ученым приходит метод аналогии. Суть его состоит в том, что наше Солнце – довольно обыденное светило из разряда желтых карликов. Таких на небосклоне – пруд пруди! А значит, наблюдая за ними, определяя их видимый возраст – а это астрономы делать уже научились, – можно получать как бы мгновенные фотографии разных периодов существования нашей звезды. Вот это снимок. Солнца-младенца, вот это – юноши, а вот и старца… Сравнительно недавно, в марте 1987 года, ученым удалось «засечь» момент рождения сверхновой звезды, которую так и нарекли – Сверхновая 1987А.
А вот вам еще один пример. Группа американских астрономов недавно обнаружила столь отдаленный космический объект (квазар), что возможно науке придется пересмотреть саму теорию образования Вселенной. Ведь согласно нынешней точке зрения обнаруженный объект не имеет права на существование.
На сегодняшний день считается, что наша Вселенная образовалась в результате Большого Взрыва 15 – 20 млрд. лет тому назад. Поначалу материя распространялась во все стороны равномерно, а потом стала сгущаться в галактики и квазары. Так вот астрономы Паломарской обсерватории в Калифорнии, обнаружившие новый квазар, определили его расстояние до Земли в 14 млрд. световых лет.
Однако если объект отдален от нас расстоянием в 14 млрд. световых лет, то это равносильно тому, что мы наблюдаем его таким, каким он был 14 млрд. лет тому назад, т е. в период ранней юности Вселенной. Беда однако состоит в том, что согласно нынешней теории на столь раннем этапе существования Вселенной квазары еще не должны были образоваться.
Впрочем, сотрудник Принстонского университета Дональд Шнайдер, тоже принимавший участие в этой работе, полагает, что квазар, открытый его коллегами, возможно является единичной аберрацией, т е. говоря попросту, оптическим обманом. В этом случае теорию образования Вселенной пересматривать не придется.
– Однако нельзя исключить и такую возможность, – говорит Шнайдер, – что) подобных объектов множество, только мы до сих пор не имели возможности их обнаружить. И если нам удастся найти еще с десяток подобных квазаров, тогда волей-неволей нынешние теории придется подвергнуть пересмотру…
По случайному совпадению, почти одновременно с обнаружением престарелого квазара ученые Гарвардского университета установили, что и масса Вселенной гораздо больше, чем предполагалось до сих пор. Это открытие тоже ставит под сомнение нынешнюю вселенскую теорию.
Астрономам остается надеяться, что некоторую ясность в эту путаницу сумеет внести новая научная лаборатория, запущенная недавно на орбиту вокруг Земли.
А теоретики между тем не спят – они изобретают новые теории. Так, скажем, профессор Стивен Хокинг, с которым мы познакомимся поближе чуть позднее, в одной из своих работ, написанной совместно с Джимом Хартлом из Калифорнийского университета в Санта-Барбаре, утверждает, что вполне возможна и модель Вселенной без каких-либо границ в пространстве или во времени.
Теория Большого Взрыва предполагает, что когда-то, в самом на чале Вселенной, был момент, когда вся космическая материя концентрировалась в одной точке. Существование такой точки подразумевается общей теорией относительности. Однако безграничная Вселенная, полагает С. Хокинг, не обязательно должна возникнуть из одной точки…
Как философ, профессор Хокинг является детерменистом и полагает, что основополагающие законы Вселенной сравнительно просты и что скоро мы их откроем. В одной из своих последних лекций ученый заявил, что должен существовать свод законов, определяющих эволюцию Вселенной с самого начала. «Эти законы могли быть предопределены и богом, – говорит Хокинг, – но во всяком случае он не вмешивается, чтобы изменить их…»
Но значит ли это, что все предопределенно заранее и нам остается лишь уповать на судьбу? Отнюдь… Профессор понимает свободную волю каждого субъекта, как эквивалент теорий, применяемых в науке для изучения систем, содержащих слишком много частиц, чтобы каждую из них можно было рассмотреть отдельно. Примером того может послужить механика сплошных сред, в которой движения индивидуальных частиц в жидкости или газе рассматриваются на основе постоянного усредненного показателя. Такие теории не относятся к числу фундаментальных, но они весьма эффективны на практике. Ну а чтобы сделать свою мысль доходчивее, профессор прибег к наглядному примеру:
«Я думаю, что концепция свободной воли и моральной ответственности за наши действия является эффективной теорией в том же смысле, что и механика сплошных сред. Возможно, что все, нами проделываемое, предопределенно некоей Всеобщей теорией. Если эта теория предопределила, что мы умрем через повешение, мы не утонем. Но нужно быть чертовски уверенным, что вам предназначена виселица, чтобы отправиться в открытое море на утлом суденышке, когда ожидается сумасшедший шторм. Я заметил: даже люди совершенно убежденные, что все предопределено свыше; тем не менее, смотрят по сторонам, прежде чем перейти дорогу…»
Так что, как видите, и в самых заумных, теоретических рассуждениях можно при желании найти определенный практический прок. И мы вполне можем согласиться с хорошо известными словами: «На свете нет ничего практичнее хорошей теории».