Об интеллекте - Блейксли Сандра (книги онлайн без регистрации полностью txt) 📗
Но, несмотря ни на что, меня все так же преследовала загадка человеческого мозга и идея создания «разумных» компьютеров. Снедаемый желанием изучать живой мозг, я поступил на дистанционный курс «Физиология человека» (к счастью, на дистанционную форму обучения охотно принимают всех желающих). Получив базовые знания по биологии, я решил поступить в аспирантуру и заняться изучением разума с позиций биологической науки. Раз уж мир информационных технологий отверг начинания теоретика, изучающего проблемы мозга, то, возможно, мир биологии будет более гостеприимным в отношении ученого-кибернетика. В то время не существовало такого направления, как теоретическая биология, теоретической нейробиологии не было и в помине, и наиболее близкой кругу моих интересов я посчитал биофизику. Я тщательно подготовился, составил резюме, собрал рекомендательные письма, сдал вступительные экзамены, и – о счастье! – поступил в аспирантуру по специальности «Биофизика» в Калифорнийский университет (Беркли).
Я сгорал от нетерпения. «Наконец можно будет вплотную заняться изучением теории разума», – думал я. Работа в Grid Systems осталась позади, и в мои планы не входило возвращение в индустрию информационных технологий, что неминуемо означало ухудшение финансового благосостояния. Моя жена как раз созрела для того, чтобы подумать о продолжении рода, и тут я со счастливой миной бросаю свою прежнюю работу и перестаю быть кормильцем семьи. Трудно назвать такое решение путем наименьшего сопротивления, но я избрал свой путь сознательно и считал принятое решение наилучшим. К тому же меня поддержала и жена.
Джон Элленби, основатель Grid Systems, прощаясь со мной, сказал: «Я понимаю, что ты не намерен возвращаться в Grid или в кибернетику вообще, но человек предполагает, а Бог располагает. Вместо того чтобы сжигать все мосты, возьми лучше длительный отпуск за свой счет. И если все же через год-два тебе захочется вернуться в компанию, ты придешь на ту же должность и заработную плату плюс та же доля акций нашей компании». Это был очень благородный жест с его стороны. Я согласился, хотя и предчувствовал, что навсегда покидаю компьютерный бизнес.
2. Нейронные сети
В январе 1986 года я приступил к учебе в аспирантуре. Прежде всего я решил составить обзор теорий разума и функций мозга. Я перечитал сотни работ анатомов, физиологов, лингвистов, философов, психологов, а также ученых-кибернетиков. В каждой из перечисленных сфер деятельности предлагалась своя терминология и особый взгляд на функционирование мозга. Все описания показались мне достаточно поверхностными и неопределенными. Лингвисты писали о разуме в терминах синтаксиса [4] и семантики [5], утверждая, что мозг и, соответственно, интеллект, можно полностью исследовать посредством языка. Изучавшие зрительное восприятие писали о двухмерном и трехмерном измерениях. Они полагали, что основой разума и функционирования мозга служит визуальное распознавание объектов окружающей среды. Компьютерщики писали о схемах и структурах – понятиях, специально введенных для описания информации, но не утруждали себя изучением живого разума. С другой стороны, анатомы и нейрофизиологи очень подробно описывали строение мозга и функционирование нейронов, но при этом даже и не пытались создать единую всеохватывающую теорию. Упорядочить это невероятное количество подходов и подкрепляющих их экспериментальных данных представлялось немыслимым.
И вот в сфере разработки искусственного интеллекта появилось новое многообещающее направление, а именно – нейронные сети, о которых заговорили еще в начале шестидесятых годов XX века. В умах руководителей организаций, осуществляющих финансирование исследований, нейронные сети и искусственный интеллект занимали конкурирующие позиции. Причем 800-фунтовой гориллой, которая легко вытесняла соперника с ринга, был искусственный интеллект. Исследования нейронных сетей финансировались плохо и на несколько лет были даже занесены в черный список. Но это не остановило немногочисленных энтузиастов, не перестававших заниматься нейронными сетями. Их счастливая звезда взошла в середине 1980-х годов. Трудно сказать наверняка, чем именно был вызван внезапный интерес к нейронным сетям, но, вне всякого сомнения, свою роль сыграла череда неудачных попыток создания искусственного интеллекта. Начался поиск альтернатив, и выбор пал на нейронные сети.
Создатели нейронных сетей (НС) оказались далеко впереди своих коллег, бившихся над разработкой искусственного интеллекта. НС были построены, хоть и весьма приблизительно, по принципу биологической нервной системы. Вместо того чтобы заниматься программированием, исследователи нейронных сетей, так называемые коннекционисты [6], сосредоточились на изучении того, какие типы поведения генерируют различные нейронные комбинации. Мозг состоит из нейронов, стало быть, мозг – это нейронная сеть. Задачи коннекционистов состояли в том, чтобы изучить неуловимые свойства разума путем изучения взаимодействия нейронов. Они рассчитывали, правильно воссоздав связи между группами нейронов, тем самым приблизиться к решению задач, которых не смог одолеть искусственный интеллект. Нейронные сети отличаются от компьютеров тем, что у них нет центрального микропроцессора и они не сохраняют информацию в центральном блоке памяти. Информация, занесенная в память нейронной сети, сосредоточена в связях – точно так же, как и в головном мозге человека.
На первый взгляд, разработка нейронных сетей полностью соответствовала сфере моих научных интересов. Однако на тот момент я четко видел три фактора, критических для понимания работы мозга.
Во-первых, в исследования мозга следует включать временной критерий, ведь скорость обработки потока информации чрезвычайно высока. Данные, поступающие в мозг и исходящие из него, никогда не пребывают в статическом состоянии. Во-вторых, мозг насквозь пронизан обратными связями. Например, обмен между неокортексом и таламусом, главным подкорковым центром, направляющим импульсы всех видов чувствительности (температурной, болевой и др.) к стволу мозга, подкорковым узлам и коре больших полушарий, построен таким образом, что количество обратных связей превышает количество исходящих почти в десять раз! Это значит, что на каждое волокно, подающее информацию в неокортекс, приходится десять волокон, отправляющих обратную информацию к органам чувств. Обратная связь также является превалирующей формой связи между нейронами внутри неокортекса. Роль обратной связи пока что до конца не изучена, но с уверенностью можно сказать, что эта связь вездесуща. Для нас это очень важно.
Наконец, в-третьих, любая модель (или теория мозга) должна соответствовать биологическому строению живого мозга. У неокортекса очень сложное строение, которое, как мы увидим позже, представляет собой повторяющуюся иерархию. Любая нейронная сеть, не имеющая таковой, не сможет воссоздать работу мозга.
Первые нейронные сети представляли собой крайне упрощенные v модели, которые не удовлетворяли ни одному из трех описанных выше требований. Большинство из них были трехслойными. Входной слой нейронов служил для ввода значений входных переменных. Нейроны этого слоя были связаны с нейронами промежуточного слоя, так называемыми скрытыми элементами. Скрытые элементы были связаны с последним слоем нейронов – элементами выхода. Связи между нейронами имели переменную силу. Это означало, что активность внутри одного нейрона могла усилить активность внутри второго и ослабить активность внутри третьего – в зависимости от силы связей. Изменяя силу связей, можно было «обучить» нейронную сеть соотношению входящих данных с исходящими.
Простейшие нейронные сети были предназначены для обработки статических данных, в них не была задействована обратная связь, и они не имели ничего общего с живым мозгом. Типичный пример нейронной сети – сеть с прямой передачей сигнала, в которой элементы выхода транслируют сигнал об ошибке, и этот сигнал подается на элементы входа. Может показаться, что трансляция ошибок является обратной связью, но на самом деле это не так. Обратная трансляция ошибок происходила только на стадии обучения, а в процессе собственно функционирования нейронной сети потоки информации всегда передавались одним и тем же способом. Никакой обратной связи между элементами входа и выхода не наблюдалось. Кроме того, модель не учитывала временной фактор. Статические входящие сигналы превращались в статические исходящие сигналы – и ничего более. Потом подавался следующий сигнал, и все повторялось сначала. Нейронная сеть не сохраняла никаких данных о произошедших событиях, даже о тех, что случились совсем недавно. Структура нейронных сетей не шла ни в какое сравнение со сложным иерархическим строением человеческого мозга.
4
Синтаксис – здесь: способы соединения слов и символов в логическое высказывание. – Примеч. ред.
5
Семантика – лингвистическая дисциплина, изучающая значения языковых единиц, их функционирование в языке и речи. – Примеч. ред.
6
Другое название нейронных сетей – коннекционистские сети. – Примеч. ред.