Online-knigi.org
online-knigi.org » Книги » Религия и духовность » Эзотерика » Шанс есть! Наука удачи, случайности и вероятности - Вайсман Ричард (мир бесплатных книг txt) 📗

Шанс есть! Наука удачи, случайности и вероятности - Вайсман Ричард (мир бесплатных книг txt) 📗

Тут можно читать бесплатно Шанс есть! Наука удачи, случайности и вероятности - Вайсман Ричард (мир бесплатных книг txt) 📗. Жанр: Эзотерика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Однако группа Домини обнаружила, что удвоения данного гена произошли гораздо позже – 100 тысяч лет назад или более. Самым крупным изменением в период «100 тысяч лет назад – наше время» стало зарождение сельского хозяйства, так что, по мнению Домини, эти удвоения произошли, когда люди начали выращивать злаковые культуры. «Освоение земледелия – знаковое событие в эволюции человека, – отмечает он. – Мы полагаем, что амилаза внесла тут свой вклад».

Именно появление сельского хозяйства позволило человечеству жить в более крупных поселениях, что, в свою очередь, породило целый ряд инноваций, культурный взрыв и в конечном счете современную жизнь. Если учесть все мутации, которые привели к этим поворотным моментам в нашей эволюции, появление человека и его эволюция выглядят как результат маловероятных совпадений. Но это лишь из-за того, что мы не видим опасных мутаций, которые при этом отбраковывались, подчеркивает Хоукс: «Нам остались только те, что давали нам конкурентные преимущества». Лишь с сегодняшней точки зрения мутации, обеспечившие нам теперешнюю физическую форму, кажутся «правильными». Хоукс замечает: «Это взгляд ретроспективный. Задним числом весь этот процесс в целом кажется ошеломляющей чередой совпадений».

Глава 2. Случай и мозг

Почему правда вечно ускользает

Наш мозг – штука поразительная. Как мы уже видели, его аналитических возможностей хватает на то, чтобы понять, как мы здесь вообще очутились, и даже оценить, какую роль при этом играл случай. Но если мозг предоставить самому себе, случайность будет обманывать его снова и снова. В следующей главе мы спустимся на уровень презренных цифр с их скучными подробностями и рассмотрим математику случайного. Пока же давайте насладимся странными взаимодействиями человеческого сознания и случая. Нам предстоит заняться проблемами совпадений и везения: откуда они берутся и почему так часто водят нас за нос? Мы попробуем выяснить, в силах ли мозг справиться с требованиями казино и можно ли научиться действовать случайным образом. Кроме того, мы поглядим, нельзя ли заставить удачу работать на вас: везучесть не всегда сводится к чистому везению.

Потрясающе, не правда ли?

Мы обожаем наблюдать работу случая, наделяя глубоким смыслом те виды коррелирующих между собой событий, которые для статистики совершенно лишены какого-то особого значения. Похоже, это своего рода врожденный рефлекс. Вполне возможно, что человек всегда отыскивал значение в незначительном.

Йен Стюарт и Джек Коэн готовы порассуждать о психологической приманке – неожиданном совпадении.

Автодром Херес, последний заезд «Формулы-1» 1997 года. В этом Гран-при Михаэль Шумахер на одно очко опережает своего давнего соперника Жака Вильнёва – благодаря блистательной тактике вождения своего товарища по команде «Феррари» Эдди Ирвайна, отлично проявившего себя в предыдущей гонке. Товарищ Вильнёва по «Уильямсу» Хайнц-Харальд Френтцен может проделать сегодня такой же трюк, так что квалификация в поул-позишн [6] еще важнее, чем обычно.

Что же происходит? Вильнёв, Шумахер и Френтцен финишируют с абсолютно одним и тем же результатом – 1 мин 21,972 с. Потрясенные комментаторы сочли это неслыханным, поразительным совпадением. Что ж, и вправду совпадение, ведь время прохода дистанции у всех троих совпало. Но поразительное ли?

Подобные вопросы возникают не только в спорте. Они появляются повсюду. Порой они тривиальны, а порой имеют очень важное значение. Удивительно ли, что вы встретили свою двоюродную бабушку Луизу, проживающую в Швеции, в этом конкретном стрип-баре Сан-Франциско? Три участницы рождественской вечеринки явились в одинаковых платьях – вправду ли это такая неожиданность? В науке тоже много таких вопросов, и куда более серьезных. Насколько значим «лейкемический кластер»? Действительно ли сильная корреляция между раком легких и наличием курильщика в семье доказывает, что пассивное курение опасно?

Один из авторов этого опуса, Джек Коэн, специализируется в области репродуктивной биологии. Как-то раз его попросили объяснить два очень любопытных статистических наблюдения. Во время визита в Израиль ему сообщили, что 84 % детей пилотов израильских истребителей – девочки. «Что в жизни пилота истребителя предопределяет такое преобладание дочерей над сыновьями?» – поинтересовались у него. Другую цифру упо мянули в связи с проблемой оплодотворения in vitro. В наши дни клиники, которые занимаются этой процедурой, следят за овуляцией при помощи ультразвука и поэтому могут определить, из какого яичника берется яйцеклетка (и получающийся младенец) – из левого или из правого. В одной клинике обнаружили, что большинство девочек происходят из левого яичника, а большинство мальчиков – из правого. Революция в области выбора пола будущего ребенка? Или просто статистический выброс?

Решить эту проблему не так-то просто. Интуиция здесь бесполезна: когда речь идет о случайных событиях, незачем пытаться что-то «почуять нутром». Многие уверены, что лотерейные номера, которые долго не выпадали, выпадут в будущем с большей вероятностью, чем иные. Такие люди ссылаются на некий «закон средних величин» – мол, в долгосрочной перспективе все должно уравняться. На самом деле все иначе, хотя эта истина и противоречит нашей интуиции. Да, в долгосрочной перспективе у всех лотерейных номеров одинаковые шансы. Но у лототрона нет памяти. Рано или поздно доли выпавших шаров сравняются, но вы не можете заранее предсказать, когда наступит это «рано или поздно». Более того, если вы решите выбрать какое-то конкретное число попыток, каким бы большим оно ни было, самым точным прогнозом окажется следующий: «Всякий первоначальный дисбаланс останется неизменным».

Наша интуиция подвергается еще более тяжким испытаниям, когда речь заходит о совпадениях. Вы приходите в ближайший бассейн, и парень за стойкой наугад берет ключ из коробки, где их полно. Пройдя в раздевалку, вы с облегчением обнаруживаете, что задействованы лишь очень немногие ящики… и тут выясняется, что у трех посетителей ящики рядом с вами, и вы хором извиняетесь, когда соседние дверцы с грохотом ударяются друг о друга. Или, скажем, вы единственный раз в жизни прилетели на Гавайи – и вдруг столкнулись там с венгром, с которым вместе работали в Гарварде. Или вы проводите медовый месяц в Ирландии… и вместе со своей молодой женой встречаете на безлюдном пляже вашего директора департамента вместе с его молодой женой. Такое как раз случилось с Джеком.

Подобные совпадения кажутся ошеломляющими, поскольку мы ожидаем, что случайные события будут распределены равномерно. Вот почему статистические сгустки событий удивляют нас. Мы думаем, что «типичный» набор выпавших номеров в Британской национальной лотерее – что-нибудь вроде «5, 14, 27, 36, 39, 45», а набор «1, 2, 3, 19, 20, 21» кажется нам куда менее вероятным. На самом деле вероятность выпадения у двух этих наборов совершенно одинакова – 1 к 13 983 816. Более того – последовательности из шести случайных чисел будут даже с большей вероятностью «слипаться», нежели «не слипаться».

Откуда мы это знаем? Специалисты по теории вероятностей решают такие проблемы при помощи так называемых выборочных пространств. Выборочное пространство (пространство выборок, пространство элементарных событий) содержит в себе не только событие, которое нас занимает, но и все возможные альтернативы. К примеру, для броска игральной кости выборочное пространство – это «1, 2, 3, 4, 5, 6». Для Британской лотереи выборочное пространство – это множество всех последовательностей 6 различных целых чисел от 1 до 49 включительно. Каждому событию в выборочном пространстве присваивается числовое значение, именуемое его вероятностью и соответствующее тому, насколько возможно данное событие. При честной игре в кости все такие значения равны, и вероятность выпадения каждой цифры составляет одну шестую. То же самое и для лотереи, но там вероятность выпадения каждого номера – 1/13 983 816.

Перейти на страницу:

Вайсман Ричард читать все книги автора по порядку

Вайсман Ричард - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


Шанс есть! Наука удачи, случайности и вероятности отзывы

Отзывы читателей о книге Шанс есть! Наука удачи, случайности и вероятности, автор: Вайсман Ричард. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*