Online-knigi.org
online-knigi.org » Книги » Религия и духовность » Эзотерика » Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I - Шкруднев Фёдор (серия книг .txt) 📗

Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I - Шкруднев Фёдор (серия книг .txt) 📗

Тут можно читать бесплатно Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I - Шкруднев Фёдор (серия книг .txt) 📗. Жанр: Эзотерика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Наверное, трудно найти надежную меру для объективной оценки самой красоты, и одной логикой тут не обойдешься. Однако здесь поможет опыт тех, для кого поиск красоты был самим смыслом жизни, кто сделал это своей профессией. Это, прежде всего, люди искусства, как мы их называем: художники, архитекторы, скульпторы, музыканты, писатели. Но это и люди точных наук, прежде всего, математики.

Доверяя глазу больше, чем другим органам чувств, человек в первую очередь учился различать окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

Золотое сечение – гармоническая пропорция

В математике пропорцией называют равенство двух отношений: a: b = c: d.

Отрезок прямой АВ можно разделить на две части следующими способами:

– на две равные части – АВ: АС = АВ: ВС;

– на две неравные части в любом отношении (такие части пропорции не образуют);

– таким образом, когда АВ: АС = АС: ВС.

Последнее и есть золотое деление.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a: b = b: c или с: b = b: а.

Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I - _017.jpg

Рис. 1. Геометрическое изображение золотой пропорции

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I - _018.jpg

Рис. 2. Деление отрезка прямой по золотому сечению BC = 1/2 AB; CD = BC

Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Отрезки золотой пропорции выражаются бесконечной дробью AE = 0.618… если АВ принять за единицу, ВЕ = 0.382… Для практических целей часто используют приближенные значения 0.62 и 0.38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая 38 частям.

Свойства золотого сечения описываются уравнением:

x2 – x – 1 = 0

Решение этого уравнения:

Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I - _018.png

Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поколения.

К примеру, в правильной пятиконечной звезде, каждый сегмент делится пересекающим его сегментом в золотом сечении (т. е. отношение синего отрезка к зеленому, красного к синему, зеленого к фиолетовому, равны 1.618).

Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I - _019.jpg

Рис. 3. Золотое сечение в пятиконечной звезде

Второе золотое сечение

Болгарский журнал «Отечество» опубликовал статью Цветана Цекова-Карандаша «О втором золотом сечении», которое вытекает из основного сечения и дает другое отношение 44: 56.

Такая пропорция обнаружена в архитектуре.

Деление осуществляется следующим образом. Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD. Радиусом АВ находится точка D, которая соединяется линией с точкой А. Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD. Точка Е делит отрезок AD в отношении 56: 44.

Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I - _020.jpg

Рис. 4. Построение второго золотого сечения

Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I - _020_2.jpg

Рис. 5. Деление прямоугольника линией второго золотого сечения

На рисунке 5 показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.

Золотой треугольник (пентаграмма)

Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой.

Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I - _021.jpg

Рис. 6. Построение правильного пятиугольника и пентаграммы

Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер. Пусть O – центр окружности, A – точка на окружности и Е – середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.

Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I - _022.jpg

Рис. 7. Построение золотого треугольника

Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 360 при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения.

Проводим прямую АВ. От точки А откладываем на ней три раза отрезок О произвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ, на перпендикуляре вправо и влево от точки Р откладываем отрезки О. Полученные точки d и d1 соединяем прямыми с точкой А. Отрезок dd1 откладываем на линию Ad1, получая точку С. Она разделила линию Ad1 в пропорции золотого сечения. Линиями Ad1 и dd1 пользуются для построения «золотого» прямоугольника.

История золотого сечения

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик. Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян.

И действительно, пропорции пирамиды Хеопса, храмов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Перейти на страницу:

Шкруднев Фёдор читать все книги автора по порядку

Шкруднев Фёдор - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I отзывы

Отзывы читателей о книге Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I, автор: Шкруднев Фёдор. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*