Чудеса и катастрофы Вселенной - Железняк Галина (бесплатные серии книг .txt) 📗
В звезде колоссальное число частиц. И как бы мало ни отличались импульсы частиц друг от друга, все же импульс самой энергичной из них окажется огромным. Но если есть импульс, то есть и давление. Если импульс частиц может оказаться большим, то велико может быть и давление. Импульс самой быстрой частицы в такой системе называется граничным Ферми-импульсом, а описанный нами газ называется вырожденным Ферми-газом. Если такой газ нагревать, то вырождение исчезнет — частицы приобретают хаотичное тепловое движение, освобождают уровни, на которых находились раньше, все больше и больше увеличивая свои импульсы…
Итак, остывая, звезда сжимается. Частицы все сильнее прижимаются друг к другу. Частиц очень много, граничный импульс Ферми очень велик. Наступает вырождение — давление вырожденного газа становится сильнее, чем обычное тепловое давление. А если сжатие продолжается, то давление вырожденного газа способно даже уравновесить силу тяжести.
Теория вырожденных звезд была развита в 1931 г. индийским астрофизиком С. Чандрасекаром. В статье «Сильно сжатая конфигурация звездной массы» он описал звезду из вырожденного газа протонов и электронов. Оказалось, что открытые почти сто лет назад белые карлики прекрасно вписываются в законы квантовой механики, законы статистики Ферми — Дирака. В белых карликах давление вырожденного газа как раз таково, что уравновешивает силу тяжести. Плотность вещества в белых карликах (1 т/см) достаточна для создания нужного давления. Наконец, размеры звезд (10 000 км) достаточны для создания нужной плотности. Все прекрасно сходилось!
Конечно же, температура белых карликов, наблюдаемых в телескопы, не равна абсолютному нулю. Спутник
Сириуса нагрет до 10 тысяч градусов. Но что значит тепловая энергия, соответствующая этой температуре, по сравнению с энергией вырождения? Капля в море… Поэтому белые карлики хорошо описываются уравнениями, выведенными для абсолютно холодного вещества.
И еще один очень важный вывод сделал Чандрасекар. Дело в том, что давление вырожденного газа из протонов и электронов тоже не может расти безгранично. Наступит момент, когда и оно не сможет противостоять силе тяжести. Для этого нужно, чтобы тяжесть превысила некоторый предел. А для этого, в свою очередь, нужно, чтобы масса звезды была больше некоторого критического значения — ведь именно масса звезды и создает тяжесть. Вывод: должна существовать предельная масса белого карлика.
Чандрасекар рассчитал величину этой предельной массы. Она оказалась равной 1,4 массы Солнца в том случае, если белый карлик состоит из гелия. Работа Чандрасекара произвела огромное, впечатление— она объясняла существование наблюдаемого класса звезд, она определяла этим звездам место в общем ряду. Из работы Чандрасекара следовало, что белые карлики — это звезды после исчерпания источников энергии (правда, никто в то время не знал, что это за источники). Белые карлики — конечная стадия жизни звезд. Всех звезд — к такому выводу пришли астрофизики. Казалось бы, здесь возникает противоречие. Белый карлик не может быть более массивен, чем 1,4 массы Солнца. Но ведь и в 20-е годы астрономы знали, что есть гораздо более массивные звезды.
ЗВЕЗДЫ: КАРЛИКИ И ГИГАНТЫ
Десять, двадцать масс Солнца. Гиганты и сверхгиганты. Что делать с ними? Они-то, видимо, не смогут стать белыми карликами? Астрономы считали, что смогут! Ничего не зная об источниках звездной энергии, они все же выдвигали гипотезы о том, как звезды эволюционируют. Когда вышла из печати статья Чандрасекара, популярной была гипотеза (ошибочная), что все звезды рождаются голубыми гигантами большой массы. Постепенно они остывают, яркость их уменьшается, они становятся красными карликами, а потом… А потом белыми. Но масса красного карлика (и тем более белого) значительно меньше массы голубого гиганта. Отсюда был сделан вывод: эволюционируя, звезды все время теряют свою массу в космическое пространство. В конце жизненного пути любая звезда потеряет ровно столько вещества, сколько нужно, чтобы ничто уже не помешало ей превратиться в белый карлик.
Так, казалось бы, наблюдательный факт (существование звезд разных масс) был состыкован с интерпретацией (звезды теряют вещество) и с теоретическими исследованиями (предельная масса белого карлика). Нуждались ли при этом астрофизики в звездах, которых никто никогда не видел?
Теперь, разобравшись в том, какую роль сыграли белые карлики, вернемся к нейтронным звездам.
Снова сделаем отступление в прошлое — в XIX век. В век торжества ньютоновой теории тяготения. Помните, как Леверье «на кончике пера» открыл Нептун? Нужно ли было более надежное доказательство ньютоновой теории? Однако… Движение планет все же чуть-чуть отличалось от рассчитанного по законам Ньютона и Кеплера. Особенно вызывающим было поведение Меркурия. Положение его перигелия (ближайшей к Солнцу точки орбиты) отклонялось от вычисленного на 43 угловые секунды в столетие. Делались, конечно, попытки объяснить этот феномен. Появилось множество гипотез, из которых до нас дошли единицы, да и то для того лишь, чтобы украсить кунсткамеру научных ошибок.
Сначала ученые вводили в Солнечную систему невидимые массы, отклонявшие планеты с их курсов. Но это не помогло. И тогда были сделаны отчаянные попытки спасти закон тяготения Ньютона, модернизируя его формулу. Так что когда Эйнштейн создал частную теорию относительности и занялся теорией тяготения, это не было прихотью гения. Вопрос назрел.
Со времен Ньютона физики знали, что вес тела пропорционален его массе. Знали, что существуют два типа массы — тяготеющая и инертная. Тяготеющая масса — это масса, которую нужно подставить в закон всемирного тяготения, чтобы рассчитать силу тяжести. Инертная масса — это масса, которую нужно подставить во второй закон Ньютона, чтобы рассчитать ускорение движения тела под действием силы. Физики знали, что эти массы численно равны друг другу. Эйнштейн сделал шаг, который нам сейчас может показаться маленьким. Но он произвел переворот в умах.
Помните, что сказал Н. Армстронг, ступив на поверхность Луны? «Это небольшой шаг для человека, но большой шаг для всего человечества». Вот эти-то «маленькие» шаги, преобразующие мир, сделать труднее всего. Эйнштейн был первым, кто твердо сказал: тяготеющая и инертная массы не просто численно равны, они — одно и то же. И это утверждение, названное принципом эквивалентности, послужило опорой для создания самой совершенной физической теории XX в. — общей теории относительности.
УСПЕШНОЕ ПРИМЕНЕНИЕ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
Эйнштейн доказал, что перигелий Меркурия должен перемещаться именно на 43 угловые секунды в столетие. Кроме того, из общей теории относительности следовало, что луч света, который прежде считался движущимся только прямолинейно (в пустоте), должен отклоняться от своей прямой траектории в поле тяжести. Ведь фотон, квант света, — материальная частица, он также должен быть подчинен закону тяготения.
Никто не знал, чему равна масса фотона. Эйнштейн нашел, что фотон существует только в движении, он не может стоять на месте, потому что его масса покоя равна нулю. А из принципа эквивалентности следовало, что и энергия тела эквивалентна вполне определенной массе — вспомните знаменитую формулу Е=МС2! И значит, луч света должен, как обыкновенный камень, двигаться в поле тяжести по кривой линии, которую можно рассчитать. Это следствие из теории тяготения в отличие от первого предстояло еще доказать на опыте. И третье следствие тоже. Заключалось третье следствие вот в чем. Если подбросить вверх камень, то он будет лететь все медленнее, его кинетическая энергия будет расходоваться на преодоление силы тяготения. В конце концов она истратится вся, камень на мгновение остановится и начнет падать.
Луч света, пущенный вверх, против поля тяжести, тоже должен разорвать путы тяготения, тоже должен, удаляясь от тяготеющего тела, терять свою энергию. Но тормозить движение фотон не может — ведь скорость света есть величина постоянная. Фотон в отличие от камня теряет энергию иначе — он «краснеет». Согласно теории квантов (тоже созданной Эйнштейном в 1905 г.), энергия фотона пропорциональна его частоте. Меньше энергия — меньше частота. Частота фотона — это его цвет. Значит, цвет луча света меняется. Из голубого луч становится красным, причем тем интенсивнее, чем более сильное поле тяжести ему приходится преодолевать. Этот эффект называется гравитационным красным смещением.