Online-knigi.org
online-knigi.org » Книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (СИ) - Большая Советская Энциклопедия "БСЭ" (читать книги онлайн бесплатно серию книг TXT) 📗

Большая Советская Энциклопедия (СИ) - Большая Советская Энциклопедия "БСЭ" (читать книги онлайн бесплатно серию книг TXT) 📗

Тут можно читать бесплатно Большая Советская Энциклопедия (СИ) - Большая Советская Энциклопедия "БСЭ" (читать книги онлайн бесплатно серию книг TXT) 📗. Жанр: Энциклопедии. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  С. к. проявляется не только в их структуре и свойствах в реальном трёхмерном пространстве, но также и при описании энергетического спектра электронов кристалла в импульсном пространстве (см. Твёрдое тело), при анализе процессов дифракции рентгеновских лучей в кристаллах с помощью пространства обратных длин и т. п.

  Группа симметрии кристаллов. Кристаллу может быть присуща не одна, а несколько операций симметрии. Так, кристалл кварца (рис. 1, а) совмещается с собой нс только при повороте на 120° вокруг оси 3 (операция g1), ной при повороте вокруг оси 3 на 240° (операция g2), а также при поворотах на 180° вокруг осей 2x, 2y, 2w (операции g3, g4 и g5). Каждой операции симметрии может быть сопоставлен геометрический образ — элемент симметрии — прямая, плоскость или точка, относительно которой производится данная операция. Например, ось 3 или оси 2x, 2y, 2w являются осями симметрии, плоскость m (рис. 1, б) — плоскостью зеркальной симметрии и т. п. Совокупность операций симметрии [g1,..., gn] данного кристалла образует группу симметрии G в смысле математической теории групп. Последовательное проведение двух операций симметрии также является операцией симметрии. Всегда существует операция идентичности g, ничего не изменяющая в кристалле, называется отождествлением, геометрически соответствующая неподвижности объекта или повороту его на 360° вокруг любой оси. Число операций, образующих группу G, называется порядком группы.

  Группы симметрии классифицируют: по числу n измерений пространства, в которых они определены; по числу т измерений пространства, в которых объект периодичен (их соответственно обозначают Gmn) и по некоторым другим признакам. Для описания кристаллов используют различные группы симметрии, из которых важнейшими являются пространственные группы симметрии G33, описывающие атомную структуру кристаллов, и точечные группы симметрии G3, описывающие их внешнюю форму. Последние называются также кристаллографическими классами.

  Симметрия огранки кристаллов. Операциями точечной симметрии являются: повороты вокруг оси симметрии порядка N на 360°/N (рис. 2, а), отражение в плоскости симметрии (зеркальное отражение, рис. 2, б), инверсия

Большая Советская Энциклопедия (СИ) - i-images-183332197.png
(симметрия относительно точки, рис. 2, в), инверсионные повороты
Большая Советская Энциклопедия (СИ) - i-images-113046926.png
 (комбинация поворота на 360°/N с одновременной инверсией, рис. 2, г). Вместо инверсионных поворотов иногда рассматривают зеркальные повороты
Большая Советская Энциклопедия (СИ) - i-images-120413284.png
. Геометрически возможные сочетания этих операций определяют ту или иную точечную группу (рис. 3), которые изображаются обычно в стереографической проекции. При преобразованиях точечной симметрии по крайней мере одна точка объекта остаётся неподвижной — преобразуется сама в себя. В ней пересекаются все элементы симметрии, и она является центром стереографической проекции.

  Точечные преобразования симметрии g [x1, x2, x3] =

Большая Советская Энциклопедия (СИ) - i-images-106015555.png
 описываются линейными уравнениями:

x'1 = а11х1 + a12x2 + a13x3,

x'2 = a21x1 + a22x2 + a23x3,     (2)

x'3 = a31x1 + a32x2 + a33x3,

т. е. матрицей коэффициента (aij). Например, при повороте вокруг хз на угол a = 360°/N матрица коэффициентов имеет вид:

Большая Советская Энциклопедия (СИ) - i-images-183297485.png
,     (3)

а при отражении в плоскости x1, x2 имеет вид:

Большая Советская Энциклопедия (СИ) - i-images-141390770.png
     (3a)

Поскольку N может быть любым, число групп

Большая Советская Энциклопедия (СИ) - i-images-149279050.png
 бесконечно. Однако в кристаллах ввиду наличия кристаллической решётки возможны только операции и соответственно оси симметрии до 6-го порядка (кроме 5-го), которые обозначаются символами: 1, 2, 3, 4, 6, а также инверсионные оси:
Большая Советская Энциклопедия (СИ) - i-images-122803085.png
 (она же центр симметрии),
Большая Советская Энциклопедия (СИ) - i-images-192413866.png
 = m (она же плоскость симметрии),
Большая Советская Энциклопедия (СИ) - i-images-192412797.png
. Поэтому количество точечных кристаллографических групп, описывающих внешнюю форму кристаллов, ограничено. Эти 32 группы С. к. приведены в таблице. В международные обозначения точечных групп входят символы основных (порождающих) элементов симметрии, им присущих. Эти группы объединяются по симметрии формы элементарной ячейки (с периодами а, b, с и углами a, b, g) в 7 сингоний кристаллографических — триклинную, моноклинную, ромбическую, тетрагональную, тригональную, гексагональную и кубическую. Принадлежность кристалла к той или иной группе определяется гониометрически (см. Гониометр) или рентгенографически (см. Рентгеновский структурный анализ).

  Группы, содержащие лишь повороты, описывают кристаллы, состоящие только из совместимо равных частей. Эти группы называются группами 1-го рода. Группы, содержащие отражения, или инверсионные повороты, описывают кристаллы, в которых есть зеркально равные части (но могут быть и совместимо равные части). Эти группы называются группами 2-го рода. Кристаллы, описываемые группами 1-го рода, могут кристаллизоваться в двух энантиоморфных формах, условно называемых «правой» и «левой», каждая из них не содержит элементов симметрии 2-го рода, но они зеркально равны друг другу (см. Энантиоморфизм, Кварц).

  Точечные группы описывают симметрию не только кристаллов, но любых конечных фигур. В живой природе часто наблюдается запрещенная в кристаллографии симметрия с осями 5-го, 7-го порядка и выше. Например, для описания регулярной структуры сферических вирусов (рис. 4), в оболочках которых соблюдаются кристаллографические принципы плотной укладки молекул, оказалась важной икосаэдрическая точечная группа 532.

  Симметрия физических свойств. Предельные группы. В отношении макроскопических физических свойств (оптических, электрических, механических и др.), кристаллы ведут себя как однородная анизотропная среда, т. е. дискретность их атомной структуры не проявляется. Однородность означает, что свойства одинаковы в любой точке кристалла, однако при этом многие свойства зависят от направления (см. Анизотропия). Зависимость от направления можно представить в виде функции и построить указательную поверхность данного свойства (рис. 5, см. также ст. Кристаллооптика). Эта функция, которая может быть различной для разных физических свойств кристалла (векторной или тензорной) имеет определённую точечную симметрию, однозначно связанную с группой симметрии огранения кристалла. Она либо совпадает с ней, либо выше её по симметрии (принцип Неймана).

Перейти на страницу:

Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку

Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


Большая Советская Энциклопедия (СИ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (СИ), автор: Большая Советская Энциклопедия "БСЭ". Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*