Online-knigi.org
online-knigi.org » Книги » Научно-образовательная » Прочая научная литература » Эволюция Вселенной и происхождение жизни - Теерикор Пекка (читать книги полностью TXT) 📗

Эволюция Вселенной и происхождение жизни - Теерикор Пекка (читать книги полностью TXT) 📗

Тут можно читать бесплатно Эволюция Вселенной и происхождение жизни - Теерикор Пекка (читать книги полностью TXT) 📗. Жанр: Прочая научная литература / Физика / Биология. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте online-knigi.org (Online knigi) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Между радио и светом находится инфракрасное тепловое излучение с длиной волн от микрометра до миллиметра. Очень короткие, невидимые глазу волны, лежащие сразу же за границей фиолетового света, называют ультрафиолетовым излучением. В 1895 году Вильгельм Конрад Рентген (1845–1923) случайно открыл рентгеновские лучи, легко проходящие сквозь любое вещество. Положив руку перед источником этих лучей и экраном, Рентген был удивлен, увидев кости своей руки (первое рентгеновское обследование). Но и рентгеновское излучение тоже оказалось электромагнитным с длиной волн короче ультрафиолетового. Самое коротковолновое излучение называется гамма-излучением; его открыли несколькими годами позже при исследовании радиоактивных элементов (рис. 13.9).

Эволюция Вселенной и происхождение жизни - img51D8.png

Рис. 13.9. Разные типы электромагнитных волн и их длина (рисунок: NASA).

Глава 14 Время и пространство

Обсуждая успехи небесной механики, мы уже цитировали Томаса Хаксли: «Наука — это не что иное, как обученный и организованный здравый смысл». За 1700-е и 1800-е годы здравый смысл добрался и до атома. Вслед за Ньютоном мы можем представить себе атомы в виде маленьких бильярдных шариков, взаимодействующих путем соударения друг с другом. Во многих случаях такого представления было достаточно. Но в начале прошлого века выяснилось, что при попытках описать природу на атомном уровне наши представления о некоторых явлениях микромира, а также о высокоскоростных явлениях «теряют смысл». Как гласит надпись при входе на один из физических факультетов в Англии: «Осторожно! Физика может развить ваши умственные способности! [4]»

Странная скорость света.

Первый «бессмысленный» физический результат получили американские физики Альберт Майкельсон и Эдвард Морли в 1887 году, пытаясь измерить движение Земли в пространстве, определяя, с какого направления свет приходит с наибольшей скоростью. Естественно, ожидалось, что свет быстрее всего приходит с того направления, куда мы движемся. Это вытекает из нашего каждодневного опыта движения сквозь воздух. Майкельсон и Морли вычислили, что время, необходимое лучу света для преодоления пути туда и обратно между двумя параллельными зеркалами, должно иметь максимальное значение, когда линия, соединяющая центры зеркал, параллельна направлению движения Земли; и это время будет минимальным, когда луч света между зеркалами распространяется перпендикулярно движению планеты (рис. 14.1 и 14.2).

Эволюция Вселенной и происхождение жизни - imgCD8D.jpg

Рис. 14.1. (а) Альберт Майкельсон (1852–1931) и (б) Эдвард Морли (1838–1923).

Эволюция Вселенной и происхождение жизни - imgCE77.png

Рис. 14.2. Интерферометр Майкельсона. Свет от источника расщепляется на два луча с помощью полупрозрачного зеркала. Лучи расходятся в перпендикулярных направлениях и отражаются от двух зеркал. Отраженные лучи направляются через тоже полупрозрачное зеркало в телескоп. Анализируя интерференционные полосы, возникшие при сложении этих двух лучей, можно определить, как зависит скорость света от движения Земли в пространстве.

По оценкам Майкельсона и Морли, разность времен прохождения света в их опыте должна быть маленькой, но измеряемой. Однако в эксперименте никакой разницы замечено не было. Пришлось сделать вывод, что свет распространяется всегда с одинаковой скоростью, независимо от движения измерительного прибора. Определяя скорость света, покоящийся наблюдатель получает такое же значение, как и те, которые приближаются или удаляются от источника света.

Путешествие на лодке по реке служит хорошей аналогией этого опыта, иллюстрирующего странную нечувствительность движения света к «эфирному потоку». В соревновании двух лодок одна из них движется туда и обратно поперек реки, а вторая проходит такое же расстояние вниз по течению и обратно. Предполагается, что обе лодки имеют одну и ту же скорость относительно воды. Скорость второй лодки увеличивается, когда она плывет вниз по реке, и уменьшается, когда она движется против течения. Простые вычисления показывают, что лодка, пересекающая течение, совершает свой заплыв быстрее, чем ее соперница, плывущая вдоль реки. Но свет не ведет себя так же «логично».

Майкельсон и Морли, а также и другие экспериментаторы, доказали, что свет не является обычной волной, распространяющейся в обычной среде. Если бы эти эксперименты проводились со звуковыми волнами или любыми другими волнами, распространяющимися в среде (типа воды), то всегда можно было бы определить разность скоростей и направление движения. Максвелл считал, что свет можно представить как колебания электромагнитного поля, и полагал, что эти колебания происходят в эфире. Но теперь возникла необходимость ввести новое представление о природе пространства и времени, что и было сделано Альбертом Эйнштейном.

Альберт Эйнштейн.

Эйнштейн родился в городе Ульм (Германия) в семье ювелира. Альберт с трудом вписывался в школьную систему и был вынужден покинуть школу в 16 лет. Его отец, надеясь, что сын займется бизнесом, искал иные пути продолжения его образования. Технический университет в Цюрихе принял Альберта без аттестата немецкой школы, но лишь со второй попытки. В 1900 году, в возрасте 21 года, он окончил университет, но далеко не сразу нашел работу. После двух лет поисков он стал техническим служащим в Патентном бюро г. Берн. Эта работа оказалась для него вполне подходящей: между делом Эйнштейн закончил свою диссертацию и защитил ее, преодолев некоторые проблемы.

Далее в карьере Эйнштейна не происходило ничего такого, что могло бы предвосхитить чудо 1905 года: три статьи в солидном журнале Annalen der Physik, сделавшие Эйнштейна, возможно, самым знаменитым ученым прошлого века и приведшие его к Нобелевской премии. Эти статьи были о броуновском движении, о «световом газе» и о частной (специальной) теории относительности. Первая статья приводила неопровержимые аргументы в пользу вещества, состоящего из атомов, факт, который никак не признавался в то время. Вторая статья давала новую интерпретацию природы света, и третья, наиболее известная статья, обсуждала новое виденье пространства и времени и, кроме всего остального, позднее привела к предсказанию огромных резервов энергии, скрытой в материи.

Исследования Эйнштейна не остались незамеченными, но понадобилось время, чтобы они приобрели широкую известность среди профессионалов. В 1908 году Эйнштейн стал доцентом в университете г. Берн, но его настоящая университетская карьера началась через год, когда он получил место адъюнкт-профессора в университете Цюриха. В 1911 году Эйнштейн переехал в Прагу. Проведенное там время стало знаменательным в карьере Эйнштейна, поскольку именно в Праге с помощью своего друга Георга Пика он познакомился с новыми математическими методами. Они были ему необходимы для следующего гигантского шага вперед в развитии физики.

Только через год Эйнштейн вернулся в Швейцарию, в свою alma mater в Цюрихе, где вместе с Марселем Гроссманом он начал разрабатывать общую теорию относительности. Это была новая теория гравитации, уточнявшая теорию Ньютона. Эйнштейн стал настолько знаменит, что в 1914 году его назначили главой физического отделения Института Кайзера Вильгельма в Берлине и выбрали членом Прусской академии. Здесь он в 1916 году опубликовал основы общей теории относительности. Во время солнечного затмения 1919 года британская экспедиция, организованная Артуром Эддингтоном, наблюдала искривление света, предсказанное Эйнштейном, и тем самым превратила теорию Эйнштейна в серьезного конкурента теории Ньютона.

Эволюция Вселенной и происхождение жизни - imgF44E.png

Рис. 14.3. Альберт Эйнштейн (1879–1955) и Хендрик Лоренц (1853–1928) в Лейдене в 1921 году.

Перейти на страницу:

Теерикор Пекка читать все книги автора по порядку

Теерикор Пекка - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.


Эволюция Вселенной и происхождение жизни отзывы

Отзывы читателей о книге Эволюция Вселенной и происхождение жизни, автор: Теерикор Пекка. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор online-knigi.org


Прокомментировать
Подтвердите что вы не робот:*