Эволюционная психология. Секреты поведения Homo sapiens - Палмер Джек (лучшие бесплатные книги .txt) 📗
Исследования ноотропиков по-прежнему находятся в зародышевой стадии. Хотя данные, полученные в исследованиях животных, подтверждают эффективность существующих ноотропиков, механизм их действия в целом неизвестен. Кроме того, характер и величина влияния ноотропиков на нашу когнитивную способность остается загадкой ввиду отсутствия экспериментов, проводимых на людях. Одно из очень серьезных соображений, которые нужно принять во внимание, — это то, что почти ничего неизвестно о долговременных эффектах таких лекарств. Американская федеральная администрация по контролю за продуктами питания и лекарствами (FDA) одобрила лишь небольшую часть этих лекарств. Как это ни парадоксально, один из наиболее часто употребляемых ноотропиков, никотин, продается совершенно легально, вызывает стойкую зависимость и, как доказано, является причиной рака и сердечных заболеваний. Учитывая лабильный характер человеческой рационализации, этот последний факт можно было бы использовать как аргумент в пользу либо более жесткого, либо менее строгого контроля употребления ноотропиков.
Ключевым различием между естественным отбором и селекцией является то, что последняя всегда основана на ценностных суждениях. Естественный отбор — это автоматический процесс, который совершенно индифферентен к таким понятиям, как хорошее и плохое, красивое и уродливое, сильное и слабое, благородное и грубое. Естественный отбор вращается исключительно вокруг репродуктивной жизнеспособности. Хотя репродуктивная жизнеспособность необходима и при селекционном выведении, селекция ориентирована на развитие некоторой характеристики или набора характеристик, которые, как считается, обладают ценностью. Евгеника, в своем первичном смысле, подобно другим формам селекции, концептуализировалась как средство «улучшения» породы, в данном случае человеческой расы. Идея евгеники очень стара и восходит к Платону и даже к более раннему времени. Ее исповедовали многие люди — от деятелей искусства, подобных Джорджу Бернарду Шоу, до человека, чье имя стало синонимом зла, — Адольфа Гитлера. В ходе истории появлялось несколько различных евгенический движений. Однако ни одна из евгенических программ не просуществовала до того времени, когда можно приняться за значительное изменение генофонда выбранной популяции. Могла ли подобная программа селекционного выведения просуществовать необходимое для осуществления время, становится вопросом для обсуждений. Вскоре мы будем обладать технологическим «ноу-хау», позволяющим изменять человеческий геном за одно поколение. Генная инженерия как наука появилась в конце 1960-х — начале 1970-х годов после открытия ферментов рестриктаз (Avise, 1998). Изучая, как вирусы и кольца дезоксирибонуклеиновой кислоты (ДНК), так называемые плазмиды, инфицируют клетки бактерий, рекомбинируют и воспроизводят себя, ученые обнаружили, что вирусы производят ферменты, названные рестриктазами, которые рассекают цепочки ДНК в специфических местах. Ферменты рестриктазы распознают определенные отрезки нуклеотидов, расположенных в специфическом порядке, и рассекают ДНК только в этих местах. Каждый фермент рестриктаза распознает свою нуклеотидную последовательность. Таким образом, ферменты рестриктазы образуют молекулярный «набор инструментов», который позволяет разрезать хромосому на различные отрезки желаемой длины в зависимости от того, какое количество различных ферментов рестриктаз используется. Каждый раз, когда используется определенный фермент рестриктаза или группа таких ферментов, ДНК разрезается на одно и то же количество идентичных отрезков, что обеспечивает точную репликацию. В 1978 году Нобелевская премия по физиологии была присвоена открывателю фермента рестриктазы Гамильтону О. Смиту, а первыми, кто использовал эти инструменты для анализа генетического состава вируса, стали Дэниел Натане и Вернер Арбер.
Ферменты рестриктазы позволяют удалять элемент ДНК из хромосомы одного организма и встраивать его в хромосому другого (Avise, 1998). Это создает возможность для продуцирования новой комбинации генов, которая может отсутствовать в природе. Например, человеческий ген можно встроить в бактерию, а ген бактерии — в растение. Однако пока эта возможность имеет пределы. Вопреки идеям научной фантастики, в настоящее время ученые не способны создать совершенно новый организм, начав лишь с пробирки, наполненной нуклеотидами. Они должны начинать с полного генетического материала уже существующего организма. Таким образом, генная инженерия обеспечивает добавление только одной новой характеристики — или небольшого их числа — в организм, который остается, в сущности, тем же. Кроме того, можно переносить только характеристики, которые определяются одним или несколькими генами. Текущие знания в области поведенческой генетики еще недостаточны, чтобы позволить ученым переносить поведенческие черты, такие как интеллект, которые представляют собой сложную совокупность многих генов и онтогенетических факторов.
В конце 1970-х — начале 1980-х годов были получены и испытаны в клинических условиях несколько биологически полезных пептидов (цепочек аминокислот, которые функционируют как нейротрансмиттеры и гормоны) (Bodmer & McKie, 1995). Первым генно-инженерным продуктом, одобренным для использования людьми, стал инсулин, полученный с помощью бактерий. Введение человеческого гена инсулина в бактерии было осуществлено компанией Genetech, занимающейся генной инженерией. После проверки и одобрения для медицинского использования началось широкомасштабное производство генно-инженерного человеческого инсулина, и в декабре 1980 года человеческий инсулин, полученный в бактериях, был впервые в мире введен диабетическому пациенту, став тем самым первым генно-инженерным продуктом, вошедшим в медицинскую практику. Генно-инженерные продукты часто можно идентифицировать по префиксу r от «рекомбинантный» (recombinant). Поэтому инсулин, полученный методом генной инженерии, иногда обозначают как r-инсулин.
Интерфероны — еще одна важная в медицинском отношении группа пептидов, которая стала доступна в большом количестве только после развития методов генной инженерии (Bodmer & McKie, 1995). Интерферон помогал при лечении вирусных инфекций, и имелись веские данные, что он может быть эффективен против некоторых видов рака. До появления методов генной инженерии требовалась трудоемкая обработка большого объема человеческой крови для получения интерферона в количестве, которого хватало для лечения лишь нескольких пациентов. К другим полезным в медицинском отношении человеческим пептидам, которые стали широко доступными благодаря генной инженерии, относятся гормон человеческого роста, который используют для лечения людей с врожденной карликовостью, и активатор плазминогена тканевого типа (t-PA), ставший многообещающим новым средством для людей, переживших сердечный приступ. После выделения в начале 1980-х годов ретровирусных векторов (переносчиков инфекции) стала широко доступной возможность эффективного переноса генов в клетки млекопитающих в целях генной терапии.
14 сентября 1990 года Соединенные Штаты стали первой страной, которая санкционировала введение новых генов в организм человеческих существ (Bodrner & McKie, 1995). Генное лекарство было использовано для лечения 4-летней девочки с тяжелой комбинированной иммунной недостаточностью (severe combined immune deficiency, SCID). У страдающих SCID отсутствует ген, который контролирует продуцирующие команды, жизненно важные для иммунного функционирования. До генного лечения пациентам с SCID приходилось жить внутри стерильных пластиковых камер. В начале 1991 года с помощью той же самой генной терапии лечили 9-летнюю девочку с SCID. В 2000 году было объявлено, что трех французских младенцев, родившихся с SCID, исцелили, используя более совершенный вариант этой методики (D'Agnese, 2001).
В настоящее время ретровирусы используют в качестве транспортирующих средств, которые переносят гены-лекарства к клеткам внутри человеческого организма. Некоторые соматические формы генной терапии не воздействуют на зародышевые клетки, и, соответственно, введенные гены не передаются потомству пациента. Сейчас по всему миру проходят санкционированные клинические испытания более десятка различных типов соматических генных лекарств (Wekesser, 1996). Большинство видов лечения направлено против рака, а остальные — против заболеваний одного гена, таких как гемофилия. Следующим крупным шагом в человеческой генной инженерии будет зародышево-родительская (germ-line) генная терапия, корректирующая недостатки, которые присутствуют в репродуктивных клетках будущих родителей или в самих эмбрионах (Taylor, 1998).